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Abstract

This paper examines a dynamic game of exploitation of a productive asset by

agents who subsequently sell the outcomes of their endeavours in an oligopolis-

tic market where a subset of the oligopolists owns a share in each other’s profits.

A Markov Perfect Nash Equilibrium of the game is constructed and used to ana-

lyze the impact of cross-ownership on the equilibrium production strategies, the

steady state resource stocks, the profitability of cross-ownership, and social wel-

fare. We show that there exists an interval of resource stocks for which a symmet-

ric cross-ownership can be profitable, even though such rival cross-shareholdings

are unprofitable in the corresponding static equilibrium framework. Moreover,

we demonstrate that cross-ownership may not only lead to a higher market output

and social welfare in the short run, but also a higher steady-state stock, industry

production, and social welfare in the long run. Thus, antitrust authorities should

be cautious in ruling in the renewable resource industries.
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1 Introduction

In a static Cournot oligopoly homogenous-product model where competing firms en-
gage in rival cross-shareholdings and participate in various forms of cooperation,1 the
static theory predicts that cross-ownership participants will reduce their output while
non-participants expand their production, leading to a lower industry output and con-
sumer surplus, but higher producer surplus and ultimately a lower welfare (Reynolds
and Snapp, 1986; Bresnahan and Salop, 1986; Farrell and Shapiro, 1990; O’Brien and Sa-
lop, 2000; Dai, Benchekroun and Long, 2022). Moreover, there exists a cross-ownership
paradox analogous to the seminal merger paradox first proposed by Salant, Switzer
and Reynolds (1983) that the seemingly profitable rival cross-shareholdings may turn
out to be unprofitable (Dai, Benchekroun and Long, 2022). However, these static re-
sults may not necessarily carry over to the case of a common property renewable re-
source industry where the resource stock, if left unexploited, reproduces itself natu-
rally at a rate that depends on the size of the stock (Benchekroun, 2008; Benchekroun
and Gaudet, 2015).

In this paper, we examine the impact of cross-ownership on the equilibrium pro-
duction strategies, profitability of cross-shareholdings, and social welfare in the con-
text of a natural resource oligopoly. To do that, we use a dynamic game model where
firms exploit the common property productive asset and compete as Cournot rivals in
the output market (Benchekroun, 2008; Colombo and Labrecciosa, 2018), but a subset
of firms engage in rival cross-shareholdings. Instead of making the usual assump-
tion that firms seek to maximize the discounted sum of their own profits, we take
into account the complex economic ties that exist in an industry characterized by ri-
val cross-shareholdings, where the aggregate profits of a firm include not only the
stream of profits generated from its own operations but also a share in its competi-
tors’ aggregate profits due to its direct and indirect ownership stakes in these firms
(Flath, 1992; Gilo, Moshe and Spiegel, 2006). Such cross-ownership activities are par-
ticularly prevalent in the renewable resource industries. For example, A Matis report
commissioned by Seafish and the Grimsby seafood cluster sheds light on the intricate
web of connections and dependencies in ownership within the largest seafood com-
panies in Iceland.2 In addition, the implementation of a tradeable quota system has
incentivized large cross-ownership in the New Zealand fishing industry as firms try
to circumvent restrictions on the maximum quotas individuals can own.3 Abundant
evidence has also been documented for the cooperation between fishermen who typi-
cally live in small communities and behave cooperatively by exchanging information,
sharing costs and dividing labour, which entitles them to a share of the profits from
other fishermen’s catches(Colombo and Labrecciosa, 2018).

1See Benchekroun, Dai and Long (2022) and Huse, Ribeiro and Verboven (2024) for examples.
2See https://www.seafish.org/document/?id=4d67242e-b529-43b9-81aa-477de5a9133e.
3See https://www.fao.org/3/Y2498E/y2498e0e.htm.
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We perform our analysis in the context of a differential game (see Dockner et al.
(2000), Long (2010) and Başar and Zaccour (2018) for concepts and applications), and
we focus on closed-loop or feedback strategies, where firms’ strategies are production
rules that depend both on time and the asset’s stock.4 A Markov Perfect Nash Equi-
librium of the game is then characterized and used to contrast with the case without
cross-ownership.

We first show that there exist scenarios such that the cross-ownership participants
may increase their output and the non-participants may lower their production as a re-
sult of cross-ownership in the short run. The former can occur for some range of large
initial resource stocks when all the firms in the industry engage in cross-shareholdings,
while the number of firms is larger than two and the ownership stake is not large
enough. The latter can occur for some range of small initial resource stocks when only
a subset of firms participate in cross-ownership. These results are quite counterintu-
itive and are in sharp contrast with the static oligopoly theory and cross-ownership
theory. Indeed, when rival firms participate in cross-ownership, they have an incen-
tive to compete less aggressively as one firms gain may come at the loss of the other
firms in which it has shareholdings. As such, each cross-ownership participant will
reduce their output, but in terms of strategic substitutes in Cournot competition, firms
that do not participate in cross-ownership will always respond by expanding their
production. However, in our context where an oligopoly exploits a common property
productive asset, there is an additional channel through which cross-ownership influ-
ences firms’ extraction rates, beyond the typical static “market power" mechanism due
to reduced competition in the output market. That is, cross-ownership also affects how
firms interact with each other at the resource level.

When the initial resource stock is abundant enough, firms will behave as if they are
not constrained by the resource stock, and thus resource scarcity plays no role. How-
ever, when the resource stock falls below a certain threshold, a positive resource rent
arises, affecting firms’ production strategies. The impact of rival cross-shareholdings
on the resource rent manifests as a negative effect for relatively large stocks and a
positive effect for relatively small stocks. In the former case, cross-owners will only
slightly reduce their production due to a relatively low shareholding in the output
market, but this results in a sufficiently abundant stock of the asset, which in turn
reduces the marginal valuation of the resource stock by each cross-ownership partici-
pant. A smaller resource rent thus incentivizes each cross-owner to expand its produc-
tion, which outweighs the production reduction brought by cross-ownership at the
output market. In the latter case, the asset remains sufficiently scarce for the relatively
low levels of stocks, leading to an increase in the marginal valuation of the resource
stock for each cross-ownership non-participant. A higher resource rent thus provides
an incentive for the outsiders to reduce their production, which dominates the static

4For a more detailed discussion on the comparison between open-loop and closed-loop strategies
in renewable resource games, see e.g., Colombo and Labrecciosa (2018).
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effect of production expansion induced by cross-ownership.
We then establish that these scenarios may indeed materialize, since firms may

find it profitable to engage in rival cross-shareholdings. We thus conduct a detailed
profitability analysis to understand the private incentives driving competing firms to
participate in cross-ownership arrangements. Specifically, we examine the profitability
of cross-ownership in the context of a common property renewable resource oligopoly
and compare it to the static case. We show that the cross-ownership paradox does
not necessarily carry over to the case of a renewable resource industry. There always
exists an interval of resource stocks for which a symmetric cross-ownership can be
profitable, even though such rival cross-shareholdings are strictly unprofitable in the
corresponding static equilibrium framework. The main intuition behind this result lies
in the common property nature of renewable asset exploitation. When multiple play-
ers share a common resource, the rate at which it is exploited (the decision variable)
is intrinsically linked to the available stock of the resource (the state variable). This
interdependence means that any action by one player that alters the stock level will
have a direct impact on the decisions made by all other players in the industry. But
no such link exists in the corresponding static oligopoly with cross-ownership, where
any given rate of production can be sustained forever. In the static game, the outsiders
always respond aggressively by expanding their production when insiders decrease
their output due to their ownership stakes. However, in the dynamic setting, the out-
siders might respond more cautiously or even reduce their output in some instances.
This moderated response occurs because, within certain stock ranges, cross-ownership
can lead to an increased valuation by each player for the marginal unit of remaining
resource stock. A consequence is that there is always an interval of initial stocks such
that the profitability of cross-ownership is always positive.

Moreover, we demonstrate that there exists a specific range of resource stocks in
which not only is cross-ownership between rival firms profitable, but it also increases
industry production. One direct implication of this result is that consumer surplus will
increase following the profitable cross-shareholdings, which, at the same time, boosts
industry profits, leading to a higher overall welfare in the short run. This outcome
sharply contradicts the traditional static theory, according to which cross-ownership
always leads to a welfare loss in the absence of any efficiency gains (Reynolds and
Snapp, 1986). This aspect holds significant relevance for discussions surrounding
competition policies, as there is a growing call for more stringent regulations of these
non-controlling minority shareholdings that are currently subject to a very lenient ap-
proach by antitrust authorities. Our findings thus suggest that competition authorities
should be cautious when ruling in the renewable resource sector, as cross-ownership
may turn out to be welfare-improving.

Finally, we delve into the effects of cross-ownership on steady-state resource stocks,
industry outputs, profitability, and social welfare in the long run. Our analysis shows
that cross-ownership results in a larger steady-state level of the productive asset’s
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stock, regardless of the initial resource stock. Additionally, we demonstrate that cross-
shareholdings between rival firms can result in an increase in the industry’s output at
the stationary equilibrium when the implicit growth rate falls below a certain thresh-
old or the initial resource stock is small enough. This result presents a stark contrast to
the static theory, which traditionally asserts that cross-ownership leads to a decrease
in industry output. The key insight here is that in our dynamic framework with a
common productive asset, cross-ownership influences the industry’s exploitation rate
through two main channels: the output market and the interaction at the resource level.
The former represents the traditional mechanism by which reduced competition in the
output market due to ownership links leads to a decrease in industry output. The lat-
ter, unique to the renewable resource industry, suggests that cross-ownership can lead
to a larger steady-state stock of the asset, thereby enabling greater industry extraction.
This interaction at the resource level thus significantly alters the dynamics of industry
output and ultimately leads to increased industry production in the long run, challeng-
ing the conventional static perspective.

Furthermore, we demonstrate that the above-mentioned scenarios could occur, as
firms will find it profitable to engage in cross-shareholdings in the transition to the
steady state of the stocks. Consequently, the long-run expansion of industry produc-
tion becomes a viable prospect, suggesting the potential for an increase in consumer
surplus in the long run as a result of cross-ownership. We then show that producer
surplus is also higher at the stationary equilibrium for these scenarios, which implies
that welfare can increase due to cross-shareholdings in the long run as well. There-
fore, antitrust authorities should exercise caution when regulating renewable resource
industries, as strict policies that restrict cooperation among users of common-pool
renewable resources could ultimately harm consumers and society. Unintentionally,
these measures might produce the exact opposite effect of what is intended.

Our paper contributes to several strands of literature. The first one is on the grow-
ing literature on cross-ownership (Reynolds and Snapp, 1986; Bresnahan and Salop,
1986; Farrell and Shapiro, 1990; Flath, 1991, 1992; Malueg, 1992; O’Brien and Salop,
2000; Dietzenbacher, Smid and Volkerink, 2000; Gilo, Moshe and Spiegel, 2006; Brito,
Cabral and Vasconcelos, 2014; Brito, Ribeiro and Vasconcelos, 2014; Brito et al., 2018;
Brito, Ribeiro and Vasconcelos, 2018; Dai, Benchekroun and Long, 2022; Huse, Ribeiro
and Verboven, 2024). However, most of these studies have focused mainly on the po-
tential anticompetitive effects induced by cross-ownership, i.e., unilateral effects and
coordinated effects, and failed to explain why and to what extent firms want to en-
gage in cross-shareholdings with the only exception of Dai, Benchekroun and Long
(2022). We add to the literature by providing the first analysis that investigates the
impact of cross-ownership in a common property renewable resource industry, and
we also demonstrate that the results obtained in the traditional static theory do not
necessarily carry over to the renewable resource industry. While Dai, Benchekroun
and Long (2022) consider a nonrenewable resource oligopoly with each firm owning
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a private resource stock, we consider a common property renewable resource in this
paper. Moreover, as opposed to Dai, Benchekroun and Long (2022) where each firm’s
strategy consists of an extraction path, in this paper each firm chooses an extraction
policy that is stock dependent, thus ensuring subgame perfectness of the equilibrium
we characterize.

Our paper also contributes to the large game-theoretic literature on the exploita-
tion of renewable resources. Previous studies have focused either on the case in which
agents behave non-cooperatively (Levhari and Mirman, 1980; Reinganum and Stokey,
1985; Karp, 1992; Dockner and Sorger, 1996; Dawid and Kopel, 1997; Sorger, 1998;
Benchekroun, 2003, 2008; Sandal and Steinshamn, 2004; Colombo and Labrecciosa,
2013a,b, 2015; Benchekroun and Gaudet, 2015; Benchekroun and Van Long, 2016) or
the case where agents act cooperatively (Benhabib and Radner, 1992; Kopel and Szi-
darovszky, 2006; Colombo and Labrecciosa, 2018). Despite such a well-established lit-
erature in resource economics, no previous studies have studied how ownership links
between any rival firms may affect the use of a renewable resource. By distinguish-
ing the situation in which all the firms in the industry participate and only a subset
of firms engage in rival cross-shareholdings, we illustrate how cross-ownership might
affect the exploitation of a common property productive asset and its impact on social
welfare.

Our paper is closely related to Colombo and Labrecciosa (2018), but differs signif-
icantly in several aspects. While they focus primarily on cooperative strategies in a
duopoly context, we examine a broader oligopoly setting, exploring scenarios where
all firms engage in cross-shareholding and cases where only a subset of firms do so.
This more general approach has allowed us to analyze the effects of cross-ownership
in a more varied and realistic market structure, providing some new insights into its
impact on market behaviour and competition. In addition, we delve into the private
incentives of rival firms to participate in cross-ownership and demonstrate that there
exist situations where the industry output, consumer surplus, producer surplus and
social welfare may increase following the profitable rival cross-shareholdings in both
the short run and long run.

Finally, our research also adds to the ongoing policy discussions on how to regu-
late cross-ownership. While horizontal mergers generally face considerable antitrust
scrutiny and often encounter opposition from antitrust authorities, non-controlling
minority shareholdings tend to escape similar levels of examination. As highlighted
by Gilo (2000) and Gilo, Moshe and Spiegel (2006), these types of arrangements often
enjoy a de facto exemption from antitrust liability or receive minimal attention from
antitrust agencies. According to Nain and Wang (2018), fewer than 1% of minority
acquisitions are challenged by the Federal Trade Commission (FTC) or the Depart-
ment of Justice (DOJ), and even fewer are blocked outright. In the European Union
and many other jurisdictions, antitrust authorities do not even have the competence
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to investigate such cases.5 Therefore, firms might consider cross-ownership a more
appealing corporate strategy and opt for it disproportionately, knowing that it gener-
ally lacks legal accountability (Jovanovic and Wey, 2014; Dai, Benchekroun and Long,
2022). This trend is particularly concerning given the minimal antitrust enforcement
against non-controlling minority shareholdings, allowing firms to reap the benefits of
cooperation with competitors while avoiding the scrutiny typically associated with
horizontal mergers. Regarding this, there have been growing calls for more stringent
regulations to limit rival-cross-shareholdings. Our findings, however, suggest that
antitrust authorities should be careful in ruling in renewable resource industries, as
cross-ownership may actually lead to a higher social welfare. Applying a “per se ille-
gal” antitrust policy is misleading, as strict application of such a policy to renewable
resources neglects the dynamics of the common resource stock that should be explic-
itly taken into account (Adler, 2004; Deacon, 2012; Benchekroun and Gaudet, 2015;
Colombo and Labrecciosa, 2018).

The remainder of the paper is structured as follows. Section 2 presents the model.
Section 3 investigates the profitability of cross-ownership and looks at the impact of
cross-ownership in the short run. Section 4 investigates the effects of cross-ownership
in the long run. Finally, Section 5 concludes.

2 The model and preliminary analysis

Let S denote the stock of some renewable assets, for instance, a fish population. We
assume that in the absence of exploitation, the stock of the asset evolves according to
the following dynamics (see e.g., Benchekroun (2008) and Benchekroun and Gaudet
(2015)):

dS
dt

= F(S) =


δS for S ≤ Sy

δSy

(
S̄−S
S̄−Sy

)
for S > Sy

, S(0) = S0 ≥ 0,

where S0 is the initial stock of the asset, δ > 0 is the intrinsic growth rate, S̄ is the
maximum carrying capacity and δSy is the maximum sustainable yield of the asset.
This specification of F(S) can be thought of as a linearization of the classical logistic
growth function in natural resource economics (Clark, 2010; Conrad, 2010). When the
stock is very small (i.e., S ≤ Sy), there is no habitat constraint and the asset grows at
an exponential rate; however, beyond Sy, the asset grows at a decreasing rate facing
limited availability of food and space. Without loss of generality, we set S̄ = 1 in what
follows.

The access to this asset is shared by J = {1, 2, · · · , n} firms, indexed by j, where
each firm exploits the asset to produce an output to sell in an oligopolistic market. For
simplicity, we assume that one unit of the asset is transformed into one unit of the

5See Fotis and Zevgolis (2016) for more discussions.
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output at zero cost. Let qj(t) denote firm j’s output at time t, and the inverse demand
function for the output at time t is given by

p(t) = a − bQ(t) = a − b ∑
j=1

qj(t).

Suppose that a subset of k firms (2 ≤ k ≤ n) engage in rival cross-shareholdings.
Following Dai, Benchekroun and Long (2022), we consider a k-symmetric cross-ownership
structure in which each of the k firms has an equal silent financial stake v in the
other firms, while the remaining n − k firms stay independent. We use the subsets
I = {1, 2, · · · , k}, indexed by i and O = {k + 1, · · · , n}, indexed by o, referring, respec-
tively, to the insiders and outsiders to the cross-ownership. In an industry character-
ized by symmetric rival cross-shareholdings, the aggregate profits of firm j at time t
is:

Πj(t) = πj(t) + v ∑
i ̸=j

Πi(t) = p(t)qj(t) + v ∑
i ̸=j

Πi(t),

where πj(t) = p(t)qj(t) = (a − b ∑j=1 qj(t))qj(t) denotes firm j’s operating profit and
v ∈ (0, 1

k−1) represents firm j’s fractional shareholdings in firm i for any i ̸= j. 6

Let Π and q denote the n × 1 vectors of aggregate profits and outputs at time t, and
D denote the n × n cross-shareholding matrix, then the aggregate profit functions can
be expressed in matrix form as

Π = pq + DΠ,

where D =

[
Akk 0
0 0n−k

]
, and Akk is a k × k matrix with element 0 in the diagonal and

v off-diagonal. This set of n equations implicitly defines the aggregate profit for each

firm at time t. Then I − D =

[
Bkk 0
0 In−k

]
, where Bkk is a k × k matrix with element

1 in the diagonal and −v off-diagonal, and In−k denote the (n − k)× (n − k) identity
matrix. The matrix I − D is invertible, which allows us to solve for the aggregate profit
functions:

Π = (I − D)−1pq =

[
B−1

kk 0
0 In−k

]
pq,

where B−1
kk is given by the following matrix

Ω ≡ 1
f (v)


1 − (k − 2)v v · · · v

v 1 − (k − 2)v · · · v
...

... . . . ...
v v · · · 1 − (k − 2)v

 ,

6The weight given to rivals’ profits is bounded from above by 1
k−1 , which guarantees that the aggre-

gate stake of rivals in each cross-ownership participant, (k − 1)v, is less than 1. See Dai, Benchekroun
and Long (2022) for more explanation on this restriction.
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with f (v) = (1+ v)
(
1− (k − 1)v

)
> 0. Then the aggregate profit function of firm i ∈ I

at time t is

Πi(t) =
a − b ∑j ̸=i qj(t)− bqi(t)

f (v)

[(
1 − (k − 2)v

)
qi(t) + v ∑

m∈I\i
qm(t)

]
,

while for firm o ∈ O, the aggregate profit function at time t is

Πo(t) = (a − b ∑
j ̸=o

qj(t)− bqo(t))qo(t).

Taking the strategies of its (J − 1) rivals as given, each firm j chooses its own deci-
sion rule to maximize the discounted sum of the aggregate profits, which consists of
its operating profit and the share of profits obtained through ownership interests in
other firms, subject to the stock dynamics. For a typical firm i ∈ I,

max
qi(t)≥0

∫ ∞

0
e−rt

[ a − b ∑j ̸=i qj − bqi

(1 + v)
(
1 − (k − 1)v

)((
1 − (k − 2)v

)
qi + v ∑

m∈I\i
qm

)]
dt, (1)

s.t.
dS
dt

= F(S)− qi − ∑
j ̸=i

qj, S(0) = S0, (2)

while for a typical firm o ∈ O,

max
qo(t)≥0

∫ ∞

0
e−rt

[
(a − b ∑

j ̸=o
qj − bqo)qo

]
dt, (3)

s.t.
dS
dt

= F(S)− qo − ∑
j ̸=o

qj, S(0) = S0 (4)

where r > 0 is the discount rate, the same for all firms.
We make the following assumption:

Assumption 1. The intrinsic growth rate satisfies the following condition:

δ > δ0 ≡ max


r
[(

k(k − 1)v − n(1 + v)
)2

+ (1 + v)2
]

2(1 + v)2 ,
a
[(

k(k − 1)v − n(1 + v)
)2

+ (1 + v)2
]

bSy

(
(k + n + 1 − k2)v + n + 1

)2


Assumption 1 implies that δ

r is strictly bounded from below, which guarantees that
there exists a strictly interior stable steady-state stock. Similar imposition of such a
lower bound can be also found in Dutta and Sundaram (1993a,b); Dockner and Sorger
(1996); Benchekroun (2003, 2008); Colombo and Labrecciosa (2015, 2018). It follows
that

δ >
r
2
⇐⇒ 2δ − r > 0, (C1)
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δ > r ⇐⇒ δ − r > 0, (C2)

(2δ − r)(1 + v) + r
(

k(k − 1)v − n(1 + v)
)
> 0, (C3)

and

δ > δ0 ≡ max
{

r(n2 + 1)
2

,
a(n2 + 1)

bSy(n + 1)2

}
. (C4)

Proof. See Appendix A.

We follow much of the existing literature and restrict our attention to stationary
Markov strategies, which are feedback decision rules whereby firms condition their
exploitation rates of the resource on the current resource stock:

qj = ϕj(S(t)).

We characterize the Markov perfect Nash equilibrium (MPNE) for the above noncoop-
erative differential game. More specifically,

Proposition 1. Let ϕ∗
i and ϕ∗

o denote the production strategy for firm i ∈ I = {1, 2, · · · , k}
and firm o ∈ O = {k + 1, · · · , n}, respectively:

ϕ∗
i (S) =



0 for 0 ≤ S ≤ S1
i ,(

1−(k−2)v
)

a−(1+v)
(

1−(k−1)v
)
(AS+B)(

(k+n+1−k2)v+n+1
)

b
for S1

i < S ≤ S2
i ,

qv
i =

(
1−(k−2)v

)
a(

(k+n+1−k2)v+n+1
)

b
for S > S2

i ,

(5)

ϕ∗
o (S) =


0 for 0 ≤ S ≤ S1

o ,

1+v
1−(k−2)v

(
1−(k−2)v

)
a−(1+v)

(
1−(k−1)v

)
(AS+B)(

(k+n+1−k2)v+n+1
)

b
for S1

o < S ≤ S2
o ,

qv
o = (1+v)a(

(k+n+1−k2)v+n+1
)

b
for S > S2

o ,

, (6)

where

A =

b(r − 2δ)
(
1 − (k − 2)v

)(
(k + n + 1 − k2)v + n + 1

)2

2(1 + v)
(
1 − (k − 1)v

)(
(k + n − k2)v + n

)2 < 0,

B =

a(2δ − r)
(
1 − (k − 2)v

)[(
k(k − 1)v − n(1 + v)

)2

+ (1 + v)2
]

2δ(1 + v)
(
1 − (k − 1)v

)(
(k + n − k2)v + n

)2 > 0,

S1
i =

(
1 − (k − 2)v

)
a − (1 + v)

(
1 − (k − 1)v

)
B

(1 + v)
(
1 − (k − 1)v

)
A

= S1
o , S2

i = − B
A

= S2
o .
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Then, the n-tuple vector of closed-loop strategies (ϕ∗
i , · · · , ϕ∗

i , ϕ∗
o , · · · , ϕ∗

o ) constitutes a MPNE
in a common property renewable resource oligopoly with cross-ownership.

Proof. See Appendix B.

Since the thresholds of the stocks are the same for the insiders and outsiders, let
S1 = S1

i = S1
o and S2 = S2

i = S2
o thereafter for ease of exposition. More specifically

after simplification, we have

S1 =

a
[
(2δ − r)(1 + v)2 − r

(
k(k − 1)v − n(1 + v)

)2]
bδ(2δ − r)

(
(k + n + 1 − k2)v + n + 1

)2 , S2 =

a
[(

k(k − 1)v − n(1 + v)
)2

+ (1 + v)2
]

bδ

(
(k + n + 1 − k2)v + n + 1

)2

Proposition 1 shows that firms’ exploitation strategies depend crucially on the stock
level of the productive asset. To visualize these results, we plot the production strate-
gies of a typical insider (ϕ∗

i ) and an outsider (ϕ∗
o ) as a function of the asset stock (S) in

Figure 1.

0 S1 S2
S

qv
i

qv
o

ϕ∗(S)

ϕ∗
i (S)

ϕ∗
o (S)

Figure 1: The feedback strategies

When the asset’s stock is too small (i.e., S ≤ S1), both the insiders and outsiders will
voluntarily cease their productions, despite the fact that they have free access to the
asset and they compete in the oligopoly market. Similar results can be also found in
Benhabib and Radner (1992), Benchekroun (2003, 2008) and Colombo and Labrecciosa
(2018) where firms refrain from consumption/production and wait for the asset to
grow to the maturity threshold. Therefore, depletion of the asset is avoided. When
the level of the stock is very large or abundant (i.e., S > S2), firms simply adopt the
production strategy that coincides with the solution under a static Cournot game with
a k-symmetric cross-ownership structure when the inverse demand is p = a − bQ
and the production cost is c = 0, i.e., qv

i and qv
o in Dai, Benchekroun and Long (2022).
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Finally, when the stock level of the asset is intermediate (i.e., S1 < S ≤ S2), both the
cross-ownership participants and non-participants will adopt a Markov strategy that
is a monotonous non-decreasing function of S, strictly increasing over S1 to S2.

Note that we would need the assumption made from Assumption 1 to ensure that

Sy > S2 ⇐⇒ δ >

a
[(

k(k − 1)v − n(1 + v)
)2

+ (1 + v)2
]

bSy

(
(k + n + 1 − k2)v + n + 1

)2 , ∀ v ∈ (0,
1

k − 1
)

or equivalently,

δ >
a(n2 + 1)

bSy(n + 1)2 .

When Sy < S2 , the N-tuple vector of closed-loop strategies (ϕ∗
i , · · · , ϕ∗

i , ϕ∗
o , · · · , ϕ∗

o ) is
not a global MPNE.

Let S∗(t) denote the equilibrium time path of the asset and Φ∗
v(S) denote the indus-

try’s production, i.e., Φ∗
v(S) = kϕ∗

i (S) + (n − k)ϕ∗
o (S), or

Φ∗
v(S) =



0 for 0 ≤ S ≤ S1

(−k2+n+k)v+n
1−(k−2)v

(
1−(k−2)v

)
a−(1+v)

(
1−(k−1)v

)
(AS+B)(

(k+n+1−k2)v+n+1
)

b
for S1 < S ≤ S2

Qv =

(
(−k2+n+k)v+n

)
a(

(k+n+1−k2)v+n+1
)

b
for S > S2

.

Then, we have the following:

Corollary 1. (i) For δSy < Qv =

(
(k+n−k2)v+n

)
a(

(k+n+1−k2)v+n+1
)

b
, there exists a unique positive

stationary asset stock given by

S∞
1 =

a
[
(2δ − r)(1 + v)2 − r

(
k(k − 1)v − n(1 + v)

)2]
bδ

(
(k + n + 1 − k2)v + n + 1

)[
(2δ − r)(1 + v) + r

(
k(k − 1)v − n(1 + v)

)] ∈ (S1, S2)

that is globally asymptotically stable with

lim
t→∞

S∗(t) = S∞
1 , for any S0 > 0;

(ii) For δSy > Qv =

(
(k+n−k2)v+n

)
a(

(k+n+1−k2)v+n+1
)

b
, there exist three positive stationary asset stocks,

denoted by S∞
1 , S∞

2 , and S∞
3 with

S1 < S∞
1 < S2 < S∞

2 < S∞
3 ,

12



where

S∞
2 =

a
(
(k + n − k2)v + n

)
bδ

(
(k + n + 1 − k2)v + n + 1

) , S∞
3 = 1−

a(1 − Sy)

(
(k + n − k2)v + n

)
bδSy

(
(k + n + 1 − k2)v + n + 1

) .

For any initial stock S0 ∈ (0, S∞
2 ), the asset stock converges to S∞

1 , while for any S0 ∈
(S∞

2 , ∞), the asset stock converges to S∞
3 .

Proof. See Appendix C.

Corollary 1 demonstrates that when the static Cournot industry output with cross-
ownership is larger than the maximum sustainable yield as in case (i), there is a unique
positive steady-state stock to which the MPNE path of the asset’s stock converges.
However, if the maximum sustainable yield exceeds the static Cournot industry out-
put with cross-ownership as in case (ii), there exist three positive steady-state stocks
with the smallest and largest being stable and the middle one unstable. The above
findings in cases (i) and (ii) of Corollary 1 are illustrated in Figure 2 and Figure 3,
respectively. Note that when the initial resource stock and the implicit growth rate

0 S1 S2
S

dS
dt

Φ∗
v(S)Qv

Sy

δSy

F(S)S∞
1 S̄

Figure 2: The stationary stock when δSy < Qv =

(
(k+n−k2)v+n

)
a(

(k+n+1−k2)v+n+1
)

b

of the asset are large enough (i.e., S0 > S∞
2 and δ >

(
(k+n−k2)v+n

)
a(

(k+n+1−k2)v+n+1
)

bSy
), exploit-

ing the asset at a rate corresponding to the static Cournot equilibrium with cross-
ownership (qv

i , · · · , qv
i , qv

o , · · · , qv
o) is sustainable as a MPNE. Firms can play this equi-

librium endlessly. Interestingly, the steady state level of the asset stock S∞
3 in this

case does not depend on the discount rate r, which implies that the resource dynam-
ics plays no role. However, when the implicit growth rate of the asset is not high

13



0 S1 S2
S

dS
dt

Φ∗
v(S)Qv

Sy

δSy

F(S)S∞
1 S∞

2 S∞
3 S̄

Figure 3: The stationary stocks when δSy > Qv =

(
(k+n−k2)v+n

)
a(

(k+n+1−k2)v+n+1
)

b

enough (i.e., δ <

(
(k+n−k2)v+n

)
a(

(k+n+1−k2)v+n+1
)

bSy
), playing the static Cournot equilibrium with

cross-ownership is not sustainable. While firms can still adopt such strategies if the
initial asset stock is above S∞

2 , these production rates will only last for a finite period
of time, after which firms will reduce their production as the stock level of the asset
falls below S∞

2 and eventually converges to S∞
1 ∈ (S1, S2).

3 The profitability of cross-ownership in a renewable re-

source industry

In this section, we exploit the characterization of the MPNE of the above-defined game
and examine the profitability of cross-ownership in the context of a common prop-
erty renewable resource oligopoly. Following Dai, Benchekroun and Long (2022), we
define the profitability of cross-ownership as the difference between the equilibrium
discounted sum of operating profits with and without cross-ownership. We then com-
pare it with the static case and show that the cross-ownership paradox result may not
hold in a renewable resource industry. Specifically, we show both analytically and
numerically that there always exists an interval of the renewable resource stock for
which a k-symmetric cross-ownership can be profitable, even though such rival cross-
shareholdings are unprofitable in the corresponding static equilibrium framework.

It should be noted that throughout this section, the analysis is conducted in the
short run, i.e., in the neighbourhood of a given initial resource stock S0. Another cru-
cial assumption we make in what follows is that rival cross-shareholdings occur only
at time t = 0 with S0 > 0 and these shareholdings are irreversible. This is an important
consideration in our dynamic framework because the timing of cross-ownership can
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become an issue as opposed to the purely static case. A symmetric cross-ownership
might be profitable for only a finite period of time, after which it would be dissolved.
Hence, it suffices to confine our focus to such a situation, as our primary aim is to il-
lustrate circumstances under which the profitability of cross-ownership is positive in
our dynamic framework but would not be in the static counterpart.

3.1 The effects on production

Before we delve into the detailed profitability analysis, it is useful to compare the
equilibrium strategies under cross-ownership with the ones under the standard com-
mon property renewable resource oligopoly model without cross-ownership as in
Benchekroun (2008). From Proposition 1 and Appendix A in Benchekroun (2008), the
benchmark equilibrium feedback strategy for a typical firm without cross-ownership
is given by

ϕ∗
c (S) =


0 for 0 ≤ S ≤ S1,N,
a−(XS+Y)
(n+1)b for S1,N < S ≤ S2,N,

qc =
a

(n+1)b for S > S2,N,

where

X =
b(r − 2δ)(1 + n)2

2n2 < 0, Y =
a(2δ − r)(1 + n2)

2δn2 > 0,

S1,N =
a − Y

X
=

a
(
2δ − r(1 + n2)

)
bδ(2δ − r)(1 + n)2 , S2,N = −Y

X
=

a(1 + n2)

bδ(1 + n)2 .

It can be easily observed that when v = 0, ϕ∗
i (S) = ϕ∗

o (S) = ϕ∗
c (S). Let Ωi and Ωo

denote the slopes of the equilibrium feedback strategies of a typical insider firm ϕ∗
i (S)

and an outsider firm ϕ∗
o (S) under cross-ownership when S ∈ [S1, S2], and denote by Ωc

the positive slope of the benchmark equilibrium strategy ϕ∗
c (S) when S ∈ [S1,N, S2,N ],

respectively:

Ωi =
(2δ − r)

(
1 − (k − 2)v

)(
(k + n + 1 − k2)v + n + 1

)
2
(
(k + n − k2)v + n

)2 ,

Ωo =
(2δ − r)(1 + v)

(
(k + n + 1 − k2)v + n + 1

)
2
(
(k + n − k2)v + n

)2 , Ωc =
(2δ − r)(1 + n)

2n2 .

We distinguish between the case of n = k in which all the firms in the industry engage
in rival cross-shareholdings and the case of n > k where only a subset of firms hold
shares in each other.7 Then, we have the following results:

Lemma 1. For any 0 < v < 1
k−1 and n = k ≥ 2, S1 > S1,N, S2 < S2,N, qc > qv

i , and
Ωi > Ωc.

7When n = k, the set O is empty. Thus by definition, ϕ∗
o does not exist as there are no outsiders. So

we only have ϕ∗
i in the case of n-symmetric cross-ownership, as if firms were merging.
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Lemma 2. For any 0 < v < 1
k−1 and n > k ≥ 2, S1 > S1,N, S2 < S2,N, qv

i < qc < qv
o , and

Ωi < Ωc < Ωo.

Proof. See Appendix D.

Lemma 1 and 2 show that when competing firms in the same industry hold shares
in each other, it has the following impact: (i) the range of asset stocks for which firms
adopt the positive and increasing Markov strategies ([S1, S2]) shrinks due to the fact
that the maturity threshold (S1) increases while the threshold beyond which firms com-
mit to the static Cournot strategies (S2) decreases; (ii) for S ∈ [S1, S2] and any n = k,
i.e., when all firms engage in cross-ownership, the linear curve of each firm becomes
steeper; (iii) for S ∈ [S1, S2] and any n > k, the outsiders become more responsive to
changes in the asset’s stock while the insiders become less responsive, i.e., the linear
curve of a typical outsider becomes steeper while that of an insider becomes flatter;
(iv) the result that qv

i decreases and qv
o increases directly follows from the static theory:

when firms hold an ownership stake in their competitors, they will compete less ag-
gressively and thus reduce their outputs, because their profit gains may come at the
loss of other firms in which they have shareholdings. But in terms of strategic substi-
tutes in Cournot competition, outsiders will respond by increasing their production.

Further, we can establish the following proposition that compares the individual
equilibrium production strategies with and without cross-ownership under n = k.

Proposition 2. For any n = k ≥ 3 and v ∈ (0, v̂), there exists a Ŝ1 ∈ (S1, S2) and a
Ŝ2 ∈ (S2, S2,N) such that ϕ∗

i (S) > ϕ∗
c (S) if and only if Ŝ1 < S < Ŝ2, where

v̂ =

(n + 1)
(

r − 2δ + n(δ − r)
)

(δ − r)
(
n2(n − 2)

)
+ 2δ − r + nδ

;

otherwise, ϕ∗
c (S) ≥ ϕ∗

i (S) for all other S. Moreover, ϕ∗
c (S) ≥ ϕ∗

i (S) for any S if any of the
following conditions is satisfied:

(i) n = k = 2 and v ∈ (0,
1

n − 1
);

or
(ii) n = k ≥ 3, and v ∈ [v̂,

1
n − 1

).

Proof. See Appendix E.

The findings of Proposition 2 are two-fold, which can be illustrated in Figure 4
that plots the possible scenarios for the individual production strategies in the cases
with and without cross-ownership when all the firms in the industry engage in rival
cross-shareholdings. First, it demonstrates that for any given resource stock such that
exploitation rates are strictly positive (i.e., S > S1,N), interlock cross-ownership results
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0 S

ϕ∗

(a) ϕ∗
i (S) > ϕ∗

c (S), ∀ S ∈ (Ŝ1, Ŝ2)

S1,N

ϕ∗
c (S)qc

S2,NS1

ϕ∗
i (S)

S2

qv
i

Ŝ1 Ŝ2 0 S

ϕ∗

(b) ϕ∗
c (S) ≥ ϕ∗

i (S), ∀ S
S1,N

ϕ∗
c (S)qc

S2,NS1

ϕ∗
i (S)

S2

qv
i

Figure 4: Individual MPNE with and without cross-ownership when n = k

in a lower production for each individual firm (i.e., ϕ∗
i < ϕ∗

c ), either when a duopoly
controls the industry or when the number of firms in the industry is large but the
ownership stake is high enough, as shown in Figure 4(b). This result is consistent
with the traditional oligopoly theory, as when firms cooperate due to their ownership
stakes, each firm will unilaterally reduce its output to lessen competition. Colombo
and Labrecciosa (2018) also find similar results in a duopoly setting. However, our
result extends beyond their 2-firm case and holds in a more general oligopoly setting
for a large enough ownership stake.

Second, Proposition 2 also states that under some conditions, there exists an in-
terval of initial resource stocks for which the cross-owner participants may increase
their production following the symmetric cross-ownership, as shown in Figure 4(a).
This result is quite surprising and goes against the static oligopoly theory and cross-
ownership theory. Indeed, when all firms participate in cross-ownership, they have
an incentive to reduce competition as one firm’s gain may come at the loss of the other
firms it has shareholdings. As such, every cross-ownership participant unilaterally
reduces its output in terms of Cournot competition. However, in our context where
an oligopoly exploits a common property productive asset, there is another channel
through which cross-ownership affects firms’ extraction rate, in addition to the re-
duced competition at the level of the output market. That is, cross-ownership also
affects how firms interact with each other at the resource level.

To explain this further, note that the value function of a typical insider firm i ∈ I,
which corresponds to the sum of the aggregate profits along the equilibrium path dis-
counted to infinity at rate r when the asset’s stock is S, is denoted by (See Proposition
1 and Appendix B)

Vi(S) =


(

S
S1

) r
δ W(S1) for 0 ≤ S ≤ S1

W(S) = A
2 S2 + BS + C for S1 < S ≤ S2

Πi
r for S > S2

.
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For S > S2, the value function of a typical insider firm i ∈ I is equal to the aggregate
profit in the static Cournot equilibrium with cross-ownership discounted to infinity at
r, independent of the asset’s stock. This means that for any S > S2, resource scarcity
plays no role and the value of an insider firm is simply the discounted market rent
due to the induced market power by cross-ownership. On the other hand for any
S < S2, the value function accounts for both the market rent and the resource rent,
which depends on the stock of the asset. More specifically, the value to an insider firm
i ∈ I of an additional until of common stock S, or the resource rent, can be determined
as

∂Vi(S)
∂S

= V′
i (S) =


r

δS1

(
S
S1

) r
δ−1

W(S1) for 0 ≤ S ≤ S1

W ′(S) = AS + B for S1 < S ≤ S2

0 for S > S2

.

It can be seen from the above that for S < S2, the rent of an additional unit of stock to
the insider is decreasing with the stock of the asset, and it tends to infinity as the stock
approaches zero.

In the absence of resource rents, reduced competition in the output market due to
cross-ownership leads to a decrease in the production of each firm. However, in the
presence of resource scarcity, i.e., when the stock of the asset is below the threshold
S2 beyond which firms commit to the static Cournot strategies, the resource rent is
positive and affects firms’ production. The impact of rival cross-shareholdings on the
resource rent manifests as a negative effect for relatively large stocks and a positive
effect for relatively small stocks.

Notice that this specific outcome – the insiders may increase their production as a
result of cross-ownership – occurs only when the number of firms is larger than two
(i.e., n = k ≥ 3) and the ownership stake is not large enough (i.e., v ∈ (0, v̂). That is,
cross-owners will only slightly reduce their production due to a relatively low share-
holding in the output market, but this results in a sufficiently abundant stock of the
asset, which in turn reduces the marginal valuation of the resource stock by each cross-
ownership participant. A smaller resource rent thus incentivizes each cross-owner
to expand its production. This output expansion is the resource rent effect of cross-
ownership. The first part of Proposition 2 and Figure 4(a) show that the effect on indi-
vidual firm’s production of the change in the resource rent due to cross-shareholdings
outweighs the effect of reduced competition at the output market for n = k ≥ 3,
v ∈ (0, v̂) and S ∈ (Ŝ1, Ŝ2).

Now we turn to the case of n > k and we can assert the following:

Proposition 3. For any n > k ≥ 2 and 0 < v < 1
k−1 , there exists a S̃ ∈ (S1, S2) such that

ϕ∗
c (S)− ϕ∗

o (S)

> 0 if S1,N < S < S̃

≤ 0 if S ≥ S̃
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while
ϕ∗

c (S) > ϕ∗
i (S) for S > S1,N,

and
ϕ∗

i (S) = ϕ∗
c (S) = ϕ∗

o (S) = 0 for S ≤ S1,N.

Proof. Directly follow from Lemma 2.

Figure 5 illustrates the findings of Proposition 3. Except for the region S ≤ S1,N

0 S

ϕ∗

S1,N

ϕ∗
c (S)qc

S2,NS1

ϕ∗
i (S)

S2

qv
i

ϕ∗
o (S)

S̃

qv
o

Figure 5: Individual MPNE with and without cross-ownership when n > k

where both the insiders and outsiders keep their production at zero, the production
of a typical insider is strictly lower than the one without cross-ownership, while the
production of a typical outsider is smaller for low stocks (S1,N < S < S̃) and larger for
high stocks (S > S̃) than the case without cross-ownership. That is, there exists a range
of initial resource stocks such that the outsiders may also lower their production as a
result of cross-ownership. This result is quite counterintuitive, as one would expect
that in terms of strategic substitutes in Cournot competition, outsiders will always
expand their production in response to the output reduction brought by cross-owners.

However, in our dynamic case where firms exploit a common stock while cross-
ownership non-participants exhibit a more pronounced response to the asset’s stock
compared to the participants, decreasing production is also in the best interest of these
outsiders for the relatively low levels of stocks (S1,N < S < S̃). In particular, the
outsiders will voluntarily cease their production for S ≤ S1 and leave the asset to grow.
As the stock gradually increases within the range (S1, S̃), the asset remains sufficiently
scarce, leading to an increase in the marginal valuation of the resource stock for each
cross-ownership non-participant. A higher resource rent thus provides an incentive
for the outsiders to reduce their production. Proposition 3 and Figure 5 show that the
output reduction resulting from the resource rent effect of cross-ownership dominates
the static effect of production expansion for S1,N < S < S̃.
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Next, we compare the equilibrium industry outputs with and without cross-ownership.
Recall that the total industry production with cross-ownership is denoted by

Φ∗
v(S) =



0 for 0 ≤ S ≤ S1

(−k2+n+k)v+n
1−(k−2)v

(
1−(k−2)v

)
a−(1+v)

(
1−(k−1)v

)
(AS+B)(

(k+n+1−k2)v+n+1
)

b
for S1 < S ≤ S2

Qv =

(
(−k2+n+k)v+n

)
a(

(k+n+1−k2)v+n+1
)

b
for S > S2

,

while the one without cross-ownership is given by

Φ∗
c (S) = nϕ∗

c (S) =


0 for 0 ≤ S ≤ S1,N

n
(

a−(XS+Y)
)

(n+1)b for S1,N < S ≤ S2,N

Qc =
na

(n+1)b for S > S2,N

.

Following Proposition 2, an immediate result can be established regarding the compar-
ison of the industry equilibrium production strategies with and without cross-ownership
when n = k. We summarize it in Corollary 2 and illustrate it in Figure 6 below.

Corollary 2. For any n = k ≥ 3 and v ∈ (0, v̂), there exists a Ŝ1 ∈ (S1, S2) and a Ŝ2 ∈
(S2, S2,N) such that Φ∗

v(S) > Φ∗
c (S) if and only if Ŝ1 < S < Ŝ2, where

v̂ =

(n + 1)
(

r − 2δ + n(δ − r)
)

(δ − r)
(
n2(n − 2)

)
+ 2δ − r + nδ

;

otherwise, Φ∗
c (S) ≥ Φ∗

v(S) for all other S. Moreover, Φ∗
c (S) ≥ Φ∗

v(S) for any S if any of the
following conditions is satisfied: (i) n = k = 2, or (ii) n = k ≥ 3 and v ∈ [v̂, 1

n−1).

0 S

Φ∗

(a) Φ∗
v(S) > Φ∗

c (S), ∀ S ∈ (Ŝ1, Ŝ2)

S1,N

Φ∗
c (S)Qc

S2,NS1

Φ∗
v(S)

S2

Qv

Ŝ1 Ŝ2 0 S

Φ∗

(b) Φ∗
c (S) ≥ Φ∗

v(S), ∀ S
S1,N

Φ∗
c (S)Qc

S2,NS1

Φ∗
v(S)

S2

Qv

Figure 6: Industry MPNE with and without cross-ownership when n = k

Now, let us turn to the case of n > k. Denote by ζv and ζc the positive slopes of the
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industry production for the cases with and without cross-ownership, respectively:

ζv =

(2δ − r)
(
(k + n + 1 − k2)v + n + 1

)
2
(
(k + n − k2)v + n

) , ζc =
(2δ − r)(1 + n)

2n
.

then we can easily observe the following result:

Lemma 3. For any n ≥ k ≥ 2 and 0 < v < 1
k−1 , Qv < Qc and ζv > ζc.

Proof. See Appendix F.

Further, we can establish the following proposition that compares the industry equi-
librium production strategies with and without cross-ownership in the case of n > k.

Proposition 4. For any n > k ≥ 2 and v ∈ (0, 1
k−1), there exists a S̃1 ∈ (S1, S2) and a

S̃2 ∈ (S2, S2,N) such that Φ∗
v(S) > Φ∗

c (S) if and only if S ∈ (S̃1, S̃2).

Proof. See Appendix G.

0 S

Φ∗

S1,N

Φ∗
c (S)Qc

S2,NS1

Φ∗
v(S)

S2

Qv

S̃1 S̃2

Figure 7: Industry MPNE with and without cross-ownership when n > k

Similar to Corollary 2, Proposition 4 also demonstrates that there exists some range
of resource stocks such that the total industry production can increase as a result of
cross-ownership. This surprising result, illustrated in Figure 7, contradicts the tradi-
tional oligopoly and cross-ownership theory. Indeed, when firms acquire an owner-
ship stake in their rivals, they compete less aggressively and thus unilaterally reduce
their output. But in terms of strategic substitutes in Cournot competition, firms that
do not participate in cross-ownership will respond by expanding their production.
However, the output reduction brought by cross-owners will outweigh the outsiders’
production expansion, leading to an overall decrease in industry production. This
is the standard static result of output reduction brought by cross-ownership. But as
explained earlier, in our dynamic context where an oligopoly exploits a common prop-
erty renewable resource, the output expansion resulting from the resource rent effect
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due to the change in the marginal valuation of the resource stock by firms as a result of
cross-ownership will dominate the static effect for any S ∈ (S̃1, S̃2). Outside this range,
the industry output is strictly lower following cross-ownership, except for S ≤ S1,N

where the production remains at zero.
Despite these solid findings, one may question whether those situations could ever

occur, as firms may never find it profitable to engage in rival cross-shareholdings in
the first place. We thus move to conduct the profitability analysis of cross-ownership
in a renewable resource industry in the next subsection and compare it to the static
case.

3.2 The profitability of cross-ownership

In a static framework, three countervailing effects are in operation when firms decide
to participate in cross-ownership in an oligopolistic market. One is the positive effect
on cross-owners’ profits due to the partial elimination of previous rivalry, the second
is the negative effect of non-participants’ production expansion in terms of strategic
substitutability, and the last one is how aggressively outsiders will respond depend-
ing on the levels of shareholdings. The relative size of these three effects drives the
final result concerning the profitability of cross-ownership. More specifically, firms
can never profit from cross-shareholdings if k

n ≤ k
2k−1 , but will also have an incentive

to do so if k
n > k

k+
√

k−1
; for participation ratios in between the lower threshold ( k

2k−1 )

and upper threshold ( k
k+

√
k−1

), there exists a large range of shareholdings for which a
k-symmetric cross-ownership can be profitable (See Proposition 2 in Dai, Benchekroun
and Long (2022)).

However, as we shall show below, this static result may not necessarily carry over
to the case of a common property renewable resource industry where the resource
stock, if left unexploited, reproduces itself naturally at a rate that depends on the size
of the stock. To see this, note that the equilibrium discounted sum of operating profits
for a typical insider firm i ∈ I under the k−symmetric cross-ownership structure is
given by 8

VS = (1 − (k − 1)v)Vi(S) =


(1 − (k − 1)v)

(
S
S1

) r
δ W(S1) for 0 ≤ S ≤ S1

(1 − (k − 1)v)W(S) for S1 < S ≤ S2
πv

i
r for S > S2

,

where

W(S) =
A
2

S2 + BS + C, πv
i =

a2(1 + v)
(
1 − (k − 2)v

)
b
(
(k + n + 1 − k2)v + n + 1

)2 ,

8Recall that Vi(S) corresponds to the equilibrium discounted sum of aggregate profits or accounting
profits for a typical insider firm, which includes not only the profits from its own operations but also
the share of profits in other firms. We use the operating profits or economic profits rather than the
accounting profits to define profitability.
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while that for an individual firm without cross-ownership (as shown in Benchekroun
(2008) Proposition 1 and Appendix A) is given by

Vc =


(

S
S1,N

) r
δ Wc(S1,N) for 0 ≤ S ≤ S1,N

Wc(S) for S1,N < S ≤ S2,N

πc
r for S > S2,N

,

where

Wc(S) =
X
2

S2 + YS + Z, πc =
a2

b(n + 1)2 ,

X =
b(r − 2δ)(1 + n)2

2n2 < 0, Y =
a(2δ − r)(1 + n2)

2δn2 > 0,

Z =
a2(2δ − r(1 + n2)

)(
2δn2 − r(1 + n2)

)
4brδ2n2(1 + n)2 ,

S1,N =
a − Y

X
=

a
(
2δ − r(1 + n2)

)
bδ(2δ − r)(1 + n)2 , S2,N = −Y

X
=

a(1 + n2)

bδ(1 + n)2 .

Then, a k−symmetric cross-ownership is profitable when

G(k, n, v, S) = VS − Vc > 0.

Clearly, the profitability of cross-ownership in a common pool renewable resource
industry depends on k, n, v, but also crucially depends on the asset stock S.

It is useful to distinguish five regions for the resource stocks, with Region I: S ∈
[0, S1,N), Region II: S ∈ [S1,N, S1), Region III: S ∈ [S1, S2), Region IV: S ∈ [S2, S2,N), and
Region V: S ∈ [S2,N, ∞). The profitability function G(k, n, v, S) can then be expressed
as

G(k, n, v, S) =



(1 − (k − 1)v)
(

S
S1

) r
δ W(S1)−

(
S

S1,N

) r
δ Wc(S1,N) for 0 ≤ S < S1,N

(1 − (k − 1)v)
(

S
S1

) r
δ W(S1)− Wc(S) for S1,N ≤ S < S1

(1 − (k − 1)v)W(S)− Wc(S) for S1 ≤ S < S2
πv

i
r − Wc(S) for S2 ≤ S < S2,N

πv
i

r − πc
r for S ≥ S2,N

.

It can be easily observed that for any S ≥ S2,N, the dynamic profitability is simply
equal to the static profitability discounted to infinity at rate r. That is, the cross-
ownership paradox result obtained in Dai, Benchekroun and Long (2022) will also
hold in the dynamic equilibrium for any S that is large enough. However, our dy-
namic profitability holds beyond this static result. More specifically, we have

Result 1. If a k-symmetric cross-ownership is profitable in the static Cournot equilibrium, it
will also be profitable in the dynamic equilibrium for all S.
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To illustrate this result, we retain the numerical examples used in Dai, Benchekroun
and Long (2022) and plot in Figure 8 the dynamic profitability as a function of the
resource stock when the participation ratio satisfies k

n > k
2k−1 . Using parameter values

of a = 5, b = 0.5, r = 0.15, Sy = 0.75, δ = 12, we fix k = 6 and vary n = 7, 8, 9, 10 and
plot G as a function of S for different levels of ownership v. As a direct comparison, we

(a) k = 6, n = 7 (b) k = 6, n = 8

(c) k = 6, n = 9 (d) k = 6, n = 10

Figure 8: Dynamic profitability as a function of S when k
n > k

2k−1

reproduce in Figure 9 the static profitability as a function of the ownership level v. As
shown in Figure 9(b), when k is fixed at 6, the static profitability of cross-ownership is
always positive for any admissible v ∈ (0, 1

k−1) when n = 7, while for n = 8, 9, 10, it is
positive if v < 17.6%, 12.5%, 6.5%, respectively. Further, we can observe that this static
result also carries over to the renewable resource industry for all S as long as v satisfies
the corresponding conditions throughout Figures 8(a), 8(b), 8(c) and 8(d). Simulations
using many other combinations of k and n satisfying k

n > k
2k−1 also find such findings,

suggesting that Result 1 is quite robust.
Moreover, a closer look at Figure 8 seems to indicate that there exists a range of

initial resource stocks such that the symmetric cross-ownership can be profitable, even
though it is unprofitable in the corresponding static framework.9 For instance, in the

9It should be noted that the segment for G when S is small is not a vertical line. This is because the
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(a) k
n ≤ k

2k−1 (b) k
n > k

2k−1

Figure 9: Static profitability as a function of v in Dai, Benchekroun and Long (2022)

case of k = 6 and n = 8, the static profitability is negative if each of the 6 firms
holds more than 17.6%, but as shown in Figure 8(b), the symmetric cross-ownership
can be profitable even for v > 17.6% over some range of resource stocks. Similarly
as illustrated in Figure 8(c), the dynamic profitability for v > 12.5% when k = 6 and
n = 9 is positive over some interval of the initial resource stocks, while such cross-
shareholdings are not profitable in the static model. Moreover, compared to the static
case where the symmetric cross-ownership is not profitable for v > 6.5% when k = 6
and n = 10, it can be profitable in the dynamic model for some initial resource stocks,
as demonstrated in Figure 8(d). In addition, the larger the shareholding, the smaller
the range of initial resource stocks for which the dynamic profitability is positive.

We now move to check whether these findings can also hold when the participation
ratio satisfies k

n ≤ k
2k−1 in which the static profitability is strictly negative for any

admissible v ∈ (0, 1
k−1) as shown in Figure 9(a). Using the same parameter values as

in Figure 8, Figure 10 illustrates the dynamic profitability G as a function of the initial
resource stock S for different levels of shareholdings v when k

n ≤ k
2k−1 . While Figures

10(a), 10(b), 10(c) show that for some large level of ownership v, firms can never profit
from rival cross-shareholdings for all S, we also observe that there always exists some
range of initial stocks such that the profitability of cross-ownership is positive, even in
the least possible case of k = 2 and n = 3. In addition, the range of resource stocks for
which a k-symmetric cross-ownership is profitable shrinks as v increases. Simulations
using a wide range of k and n that satisfy k

n ≤ k
2k−1 also support these findings. We

now formally summarize these results in below:

Result 2. There exists an interval of resource stocks such that a k-symmetric cross-ownership
can be profitable, even though such rival cross-shareholdings are unprofitable in the correspond-
ing static equilibrium framework. Moreover, this interval decreases in the level of sharehold-
ings.

values of S1,N and S1 are relatively too small compared to S2 and S2,N . Trying to plot the whole region
will result in such a display.
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(a) k = 2, n = 3 (b) k = 3, n = 5

(c) k = 5, n = 9 (d) k = 6, n = 11

Figure 10: Dynamic profitability as a function of S when k
n ≤ k

2k−1

Up until now, we have not yet explained the difference in the profitability of cross-
ownership between the static and dynamic frameworks. However, as already men-
tioned earlier, a key factor that drives the significantly different results is the presence
of a scarcity rent on the renewable resource, which is absent in the static model. Note
that from the first-order conditions of the Hamilton-Jacobi-Bellman (HJB) equations to
the problems of (1)–(4), the best response functions for a typical insider firm i ∈ I and
an outsider firm o ∈ O are respectively given by 10

ϕi =

(
1 − (k − 2)v

)
a −

(
1 − (k − 2)v

)
(n − k)bϕo − (1 + v)

(
1 − (k − 1)v

)
V′

i (S)[
1 + k +

(
1 − k(k − 2)

)
v
]

b
, (7)

and
ϕo =

a − bkϕi − V′
o(S)

b(n − k + 1)
, (8)

where V′
i (S) = ∂Vi(S)

∂S and V′
o(S) = ∂Vo(S)

∂S denote the resource rent or the marginal
valuation of an additional unit of the resource stock by cross-ownership participants

10Please refer to Appendix B for more details.
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and non-participants, respectively. In the purely static Cournot model with cross-
ownership, both the terms V′

i (S) and V′
o(S) are 0, as by definition firms’ production

decisions are independent of S. The corresponding pair of reaction functions thus
become

ϕi =

(
1 − (k − 2)v

)
a −

(
1 − (k − 2)v

)
(n − k)bϕo[

1 + k +
(
1 − k(k − 2)

)
v
]

b
, ϕo =

a − bkϕi

b(n − k + 1)
,

in which the best response of an outsider firm to the change in the production of an
insider firm due to cross-ownership, or vice versa, is simply the movement along the
reaction function. However, in our dynamic framework with the presence of resource
rents (V′

i (S) > 0, V′
o(S) > 0) as shown in (7) and (8), attempting to move along the

reaction functions due to cross-shareholdings will unexpectedly lead to a shift in those
reaction functions, because there exists a dynamic link between the level of stock to the
rate of production through the growth function in (2) and (4). This additional feature is
highly relevant to the profitability analysis of cross-ownership in a renewable resource
industry.

To see how these reaction functions are shifting, consider the impact of cross-ownership
on the resource rents over the interval (S1, S2). Recall that for S1 < S < S2,

Vi(S) =
1
2

AS2 + BS + C,

Vo(S) =
(1 + v)(1 − (k − 1)v)

1 − (k − 2)v
Vi(S) =

1
2

DS2 + ES + F,

so the marginal valuation of an additional S for a typical insider firm i ∈ I is given by

V′
i (S) =

∂Vi(S)
∂S

= AS + B,

while that for a typical outsider firm o ∈ O is

V′
o(S) =

∂Vo(S)
∂S

= DS + E.

Differentiating the resource rents with respect to v yield

∂V′
i (S)
∂v

=
∂A
∂v

(
S−SiR

)
= −

b(k − 1)(2δ − r)
(
(k(k − 1)v − (n + 1)(1 + v)

)
Θ1

2(1 + v)2
(

1 − (k − 1)v
)2(

(k + n − k2)v + n
)3

(
S−SiR

)
,

(9)
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∂V′
o(S)
∂v

=
∂D
∂v

(
S−SoR

)
= −

bk(k − 1)(2δ − r)
(
(k + n + 1 − k2)v + n + 1

)
(
(k + n − k2)v + n

)3

(
S−SoR

)
,

(10)
where

Θ1 =(k5 − 4k4 − 2k3n + 4k3 + 6k2n + k2 + kn2 − 3kn − 2k − 2n2 − 2n)v4

+ (−2k4 − 2k3n + k3 + 10k2n + 9k2 + 2kn2 − 6kn − 8k − 6n2 − 6n)v3

+ (−2k3 + 4k2n + 12k2 + kn2 − 3kn − 12k − 6n2 − 6n)v2

+ (4k2 − 8k − 2n2 − 2n)v − 2k,

SoR =−
∂E
∂v
∂D
∂v

=
a(1 + v)

bδ

(
(k + n + 1 − k2)v + n + 1

) =
qv

o
δ

, SiR = −
∂B
∂v
∂A
∂v

.

It would be ideal to explicitly demonstrate how the resource rents are changing
with v, but as shown in (9), the equation is rather cumbersome. To exemplify the
concept, we consider without loss of generality the case of k = 2 and n = 3, which is
supposedly the least likely to be profitable.11 Then equations (9) and (10) become

∂V′
i (S)
∂v

=
−4b(2δ − r)(v + 2)(v3 + 4v2 + 6v + 1)

(1 − v)2(1 + v)2(v + 3)3

(
S − SiR

)
,

∂V′
o(S)
∂v

=
−4b(2δ − r)(v + 2)

(v + 3)3

(
S − SoR

)
where

SiR =
a(v4 + 6v3 + 16v2 + 16v + 1)
2bδ(v + 2)(v3 + 4v2 + 6v + 1)

, SoR =
a(1 + v)

2bδ(v + 2)
.

It can be easily checked that for any v ∈ (0, 1
k−1),

S1 < SoR < SiR < S2.

Therefore, we have

∂V′
i (S)
∂v


> 0 for S1 < S < SiR

= 0 for S = SiR

< 0 for SiR < S < S2

, (11)

and

∂V′
o(S)
∂v


> 0 for S1 < S < SoR

= 0 for S = SoR

< 0 for SoR < S < S2

. (12)

11Indeed, for any n ≥ 2k − 1, G < 0 for all v ∈ (0, 1
k−1 ) in the static case; see Proposition 2 in Dai,

Benchekroun and Long (2022).
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Conditions (11) and (12) indicate that at a relatively large stock, i.e., S ∈ (SiR, S2),
engaging in cross-shareholdings will result in a decrease in both the insiders and out-
siders’ marginal valuation of the resource stock. At the same time, the reverse is true
at a relatively small level of stock for S ∈ (S1, SoR). In addition, for some intermediate
levels of stock, i.e., S ∈ (SoR, SiR), cross-ownership between rival firms leads to an
increase in the cross-owners’ marginal valuation of the resource stock but a reduction
in the resource rent of the outsiders.

When a subset of competitors engage in rival cross-shareholdings, this results in
an increase of the resource rents for these participants but also for those outsiders if
the initial resource stock is relatively small, i.e., S ∈ (S1, SoR). Unlike in the static case
where outsiders respond aggressively by increasing their production to mitigate any
profit gains of insiders through output reduction due to ownership links, the existence
of resource rent could attenuate such an increase and might even lead to a reduction
in outsiders’ production. This latter case can well occur when S ∈ (S1, S̃), as discussed
earlier in Proposition 3. Consequently, this engenders a more cautious response from
outsiders, in which the optimal production of an outsider firm o ∈ O, given its rivals’
production, tends to be lower compared to the static scenario where resource rents are
absent. The ‘moderation’ of the outsiders’ response to a reduction in production by
the insiders, influenced by the existence of the resource rent, elucidates the fact that
there exists a stock range within which a symmetric cross-ownership can be profitable,
despite such rival cross-shareholdings being unprofitable in the corresponding static
equilibrium framework. A similar result can be found in Benchekroun and Gaudet
(2015), who find that there always exists an interval of the asset’s stock such that any
merger is profitable. It should be noted that the above analysis is conducted for the
least possible profitable case: k = 2 and n = 3. Similar findings can be also obtained
using other combinations k and n satisfying k

n ≤ k
2k−1 that is strictly unprofitable for

any admissible v ∈ (0, 1
k−1), or any k

n > k
2k−1 that is unprofitable for v ∈ (v̄, 1

k−1) in the
static framework.

Result 1 and Result 2 also help us clarify the question we left at the end of the
last subsection, i.e., whether the output expansion resulting from cross-ownership can
actually occur! For the case of n = k in Corollary 2, the answer is obvious, since a
symmetric industry-wide cross-ownership is always profitable for all S. Consequently,
firms will always find it profitable to engage in cross-shareholdings for any S in the
first place, and thus there will always exist a range of (Ŝ1, Ŝ2) such that the industry
production increases as a result of profitable cross-ownership for any n = k ≥ 3 and
v ∈ (0, v̂). As for the case of n > k in Proposition 4, it is less straightforward. To
illustrate this, we plot in Figure 11 both the industry outputs with and without cross-
ownership and the dynamic profitability as a function of S, using the same parameter
values as in Figure 8 but fixing v = 0.15 for k = 6, n = 9 in Figure 11(a) and for
k = 6, n = 10 in Figure 11(b), respectively. It can be easily observed from Figure
11 that the range of resource stocks (S̃1, S̃2) for which the industry output increases
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(a) k = 6, n = 9 (b) k = 6, n = 10

Figure 11: The industry outputs and dynamic profitability as a function of S

following rival cross-shareholdings intersect with the interval of resource stocks (0, Ŝ)
for which a k-symmetric cross-ownership is profitable, where

G(k, n, v, Ŝ) = (1 − (k − 1)v)W(Ŝ)− Wc(Ŝ) = 0.

That is, for any S ∈ (S̃1, Ŝ), not only is it profitable for firms to engage in rival
cross-shareholdings, but also the industry production will increase as a result of cross-
ownership for any n > k and v ∈ (0, 1

k−1).

3.3 The short-run welfare implications

In the preceding analysis, we have illustrated the private incentives that motivate rival
firms to engage in cross-shareholding. Additionally, we have demonstrated that in-
dustry output can increase following profitable rival cross-shareholdings. One direct
implication of these results is that consumer surplus might also increase as a result
of cross-ownership. This aspect holds significant relevance for discussions surround-
ing competition policies, as there is a growing call for more stringent regulations of
these non-controlling minority shareholdings that are currently subject to a very le-
nient approach by antitrust authorities. In this subsection, we examine the welfare im-
plications of cross-ownership in the context of a renewable resource industry, where
welfare is defined as the sum of consumer surplus (CS) and producer surplus (PS)
or industry profits. The latter is defined as the sum of the operating profits of the
cross-ownership participants that belong to the subset I of insiders and of the non-
participants that belong to the subset O of outsiders.

From our earlier analysis, we know that starting from any initial resource stock
S ∈ (Ŝ1, Ŝ2) when n = k ≥ 3 and v ∈ (0, v̂), or any S ∈ (S̃1, Ŝ) when n > k, the
short-run industry output expands and thus consumer surplus increases following a
profitable cross-ownership. We now show that industry profits can also go up for these
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cases. The producer surplus generated by the exploitation of the common property
renewable resource under the k-symmetric cross-ownership structure is given by

PSv = kV(S) + (n − k)Vo(S) =



(
1−(k−1)v

)(
(−k2+n+k)v+n

)
1−(k−2)v

(
S
S1

) r
δ W(S1) for 0 ≤ S ≤ S1(

1−(k−1)v
)(

(−k2+n+k)v+n
)

1−(k−2)v W(S) for S1 < S ≤ S2
kπv

i +(n−k)πv
o

r for S > S2

,

while the one without cross-ownership is denoted by

PSc = nVc =


n
(

S
S1,N

) r
δ Wc(S1,N) for 0 ≤ S ≤ S1,N

nWc(S) for S1,N < S ≤ S2,N

nπc
r for S > S2,N

.

Thus, the change in PS can be defined as

∆PS = PSv − PSc

=



(
1−(k−1)v

)(
(−k2+n+k)v+n

)
1−(k−2)v

(
S
S1

) r
δ W(S1)− n

(
S

S1,N

) r
δ Wc(S1,N) for 0 ≤ S < S1,N(

1−(k−1)v
)(

(−k2+n+k)v+n
)

1−(k−2)v

(
S
S1

) r
δ W(S1)− nWc(S) for S1,N ≤ S < S1(

1−(k−1)v
)(

(−k2+n+k)v+n
)

1−(k−2)v W(S)− nWc(S) for S1 ≤ S < S2
kπv

i +(n−k)πv
o

r − nWc(S) for S2 ≤ S < S2,N
kπv

i +(n−k)πv
o

r − nπc
r for S ≥ S2,N

.

Using the same parameter values as in Figure 8, we plot the PS change as a function of
the initial stock S for different levels of v when k = 6, n = 6 in Figure 12(a) and when
k = 6, n = 10 in Figure 12(b). It can be easily observed that for all S, the change in PS is

(a) k = 6, n = 6 (b) k = 6, n = 10

Figure 12: The change in PS as a function of S
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positive. Simulations using many other combinations of k, n and v also show the same
result. This indicates that for the above-mentioned two scenarios, a profitable cross-
ownership can not only increase industry production and CS, but also boost industry
profits, leading to a higher overall welfare.

Result 3. Profitable rival cross-shareholdings can lead to a higher consumer surplus, producer
surplus and welfare in the short run if any of the following scenarios occurs:

(i) n = k ≥ 3, v ∈ (0, v̂) and S ∈ (Ŝ1, Ŝ2), where Ŝ1 ∈ (S1, S2),Ŝ2 ∈ (S2, S2,N) and

v̂ =
(n+1)

(
r−2δ+n(δ−r)

)
(δ−r)

(
n2(n−2)

)
+2δ−r+nδ

;

(ii) n > k ≥ 2, and S ∈ (S̃1, Ŝ), where S̃1 ∈ (S1, S2) and G(k, n, v, Ŝ) = 0 with Ŝ ∈
(S̃1, S2).

This result is in sharp contrast with the static oligopoly and cross-ownership the-
ory, according to which cross-ownership always leads to a welfare loss in the absence
of any efficiency gains. Indeed, when firms engage in rival cross-shareholdings, they
tend to compete less aggressively with each other and thus unilaterally reduce their
production. This happens because any increase in the acquiring firm’s activities could
diminish the returns from its shareholdings in the target firm. Although the outsider
firms that are not involved in cross-shareholdings respond by increasing their produc-
tion, the reduction in outputs from the cross-owners more than offsets this increase.
As a result, the total industry output falls and the market price increases. While this
benefits the industry by boosting profits, it reduces consumer surplus. However, the
loss in consumer surplus dominates the gains in industry profits, resulting in an over-
all welfare loss. But in our dynamic framework where an oligopoly exploits a common
pool productive asset, the presence of the resource rent effect dominates this standard
static market power effect conferred by cross-ownership for the above-stated scenarios
in Result 3. The former increases production, which outweighs the output reduction
induced by the latter, leading to a higher industry output and thus CS. The industry
profits also increase, because both insiders and outsiders expand their production at a
slightly decreased price due to a relatively moderate response. Consequently, the so-
cial welfare is higher in the short run following the profitable rival cross-shareholding
activities. This result thus suggests that competition authorities should be cautious
when ruling in the renewable resource sector, as cross-ownership may turn out to be
welfare-improving.

4 The long-run impact of cross-ownership

In this section, we explore the effects of cross-ownership on the long-run steady-state
resource stocks, industry outputs, profitability, and social welfare. More specifically,
we compare the outcomes under the k- symmetric cross-ownership structure (v > 0)

32



and the one without cross-ownership (v = 0), and then we characterize conditions
under which cross-ownership may lead to an increase in the industry output and social
welfare at the steady state.

4.1 The effects on stationary resource stocks and industry outputs

We start with the analysis on the impact of cross-ownership on the productive asset’s
stock at the steady state and the industry’s production. First, note that

Lemma 4. For any 2 ≤ k ≤ n and 0 < v < 1
k−1 , S∞

1 > S∞
1,N, S∞

2 < S∞
2,N and S∞

3 < S∞
3,N.

Proof. See Appendix H.

As discussed earlier in Corollary 1, the steady state level of the asset depends cru-
cially on the initial resource stock. We can thus distinguish the following three cases.
First, let us consider

δSy < Qv =

(
(k + n − k2)v + n

)
a(

(k + n + 1 − k2)v + n + 1
)
b
< Qc =

an
b(n + 1)

(LC1)

in which there is only one positive stationary asset stock in both the cases with and
without cross-ownership given by S∞

1 and S∞
1,N, respectively, as shown in Figure 13.

From Lemma 4, we know that S∞
1 > S∞

1,N for all 2 ≤ k ≤ n and 0 < v < 1
k−1 . There-

0
S

dS
dt

S1,N

Φ∗
c (S)

S2,N

Qc

S1

Φ∗
v(S)

S2

Qv

F(S)
Sy

δSy

S∞
1,N S∞

1 S̄

Figure 13: The stationary stock when δSy < Qv =

(
(k+n−k2)v+n

)
a(

(k+n+1−k2)v+n+1
)

b
< Qc =

an
b(n+1)

fore, the long-run industry outputs with and without cross-ownership are respectively
given by

lim
t→∞

Φ∗
v(S

∗
v(t)) = δS∞

1 , lim
t→∞

Φ∗
c (S

∗
c (t)) = δS∞

1,N, ∀ S0 > 0
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with
lim
t→∞

Φ∗
v(S

∗
v(t)) > lim

t→∞
Φ∗

c (S
∗
c (t)).

That is, following the rival cross-shareholding activities, both the productive asset’s
stock at the steady state and the industry’s production has gone up.

Next, we consider the situation

Qc =
an

b(n + 1)
> δSy > Qv =

(
(k + n − k2)v + n

)
a(

(k + n + 1 − k2)v + n + 1
)
b

(LC2)

in which there are three positive stationary stocks in the case of cross-ownership given
by S∞

1 , S∞
2 and S∞

3 respectively, while there is only one positive stationary stock in the
case of no cross-ownership given by S∞

1,N, as shown in Figure 14. Clearly, we have

0
S

dS
dt

S1,N

Φ∗
c (S)

S2,N

Qc

S1

Φ∗
v(S)

S2

Qv

F(S)
Sy

δSy

S∞
1,N S∞

1 S∞
2 S∞

3 S̄

Figure 14: The stationary stocks when Qc =
an

b(n+1) > δSy > Qv =

(
(k+n−k2)v+n

)
a(

(k+n+1−k2)v+n+1
)

b

S∞
3 > S∞

2 > S∞
1 > S∞

1,N, ∀ 2 ≤ k ≤ n, 0 < v <
1

k − 1
.

That is, regardless of the initial resource stock, the asset’s stock will converge to a larger
steady-state level following the cross-ownership activities. For any S0 ∈ (0, S∞

2 ), we
have

lim
t→∞

Φ∗
v(S

∗
v(t)) = δS∞

1 > lim
t→∞

Φ∗
c (S

∗
c (t)) = δS∞

1,N,

and for any S0 > S∞
2 , we have

lim
t→∞

Φ∗
v(S

∗
v(t)) = δSy

(
1 − S∞

3
1 − Sy

)
= Qv > lim

t→∞
Φ∗

c (S
∗
c (t)) = δS∞

1,N.
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Therefore, we can also claim that cross-ownership will result in a higher steady-state
resource stock and industry output in this scenario.

Finally, let us consider

δSy > Qc =
an

b(n + 1)
> Qv =

(
(k + n − k2)v + n

)
a(

(k + n + 1 − k2)v + n + 1
)
b

(LC3)

in which there are three positive steady-state stocks in both the case with cross-ownership
and without cross-ownership as shown in Figure 15. The stationary resource stocks

0
S

dS
dt

S1,N

Φ∗
c (S)

S2,N

Qc

S1

Φ∗
v(S)

S2

Qv

F(S)
Sy

δSy

S∞
1,N S∞

1 S∞
2 S∞

2,N S∞
3,N S∞

3 S̄

Figure 15: The stationary stocks when δSy > Qc =
an

b(n+1) > Qv =

(
(k+n−k2)v+n

)
a(

(k+n+1−k2)v+n+1
)

b

with cross-ownership are given by S∞
1 , S∞

2 and S∞
3 , while those without cross-ownership

are denoted by S∞
1,N, S∞

2,N and S∞
3,N, respectively. From Lemma 4 and Figure 15, we

know that

S∞
1,N < S∞

1 < S∞
2 < S∞

2,N < S∞
3,N < S∞

3 , ∀ 2 ≤ k ≤ n, 0 < v <
1

k − 1
.

For any S0 ∈ (0, S∞
2 ),

lim
t→∞

S∗
v(t) = S∞

1 > lim
t→∞

S∗
c (t) = S∞

1,N,

and thus
lim
t→∞

Φ∗
v(S

∗
v(t)) = δS∞

1 > lim
t→∞

Φ∗
c (S

∗
c (t)) = δS∞

1,N.

In addition, for any S0 ∈ (S∞
2 , S∞

2,N),

lim
t→∞

S∗
v(t) = S∞

3 > lim
t→∞

S∗
c (t) = S∞

1,N,
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and thus we have

lim
t→∞

Φ∗
v(S

∗
v(t)) = δSy

(
1 − S∞

3
1 − Sy

)
= Qv > lim

t→∞
Φ∗

c (S
∗
c (t)) = δS∞

1,N.

Furthermore, for any S0 > S∞
2,N,

lim
t→∞

S∗
v(t) = S∞

3 > lim
t→∞

S∗
c (t) = S∞

3,N,

and thus

lim
t→∞

Φ∗
v(S

∗
v(t)) = δSy

(
1 − S∞

3
1 − Sy

)
= Qv < lim

t→∞
Φ∗

c (S
∗
c (t)) = δSy

(1 − S∞
3,N

1 − Sy

)
= Qc.

To conclude in this scenario, regardless of the initial resource stock, the stationary asset
stock is always higher following cross-ownership, and there exist cases where the long-
run industry output increases as a result of cross-ownership.

Based on the findings from all these three possible cases, we can therefore sum-
marize in the following propositions the impact of cross-ownership on the long-run
resource stocks and the industry’s production.

Proposition 5. Regardless of the initial resource stock, cross-ownership results in a larger
steady-state level of the productive asset’s stock.

Proposition 6. For any 2 ≤ k ≤ n and 0 < v < 1
k−1 ,

lim
t→∞

Φ∗
v(S

∗
v(t)) > lim

t→∞
Φ∗

c (S
∗
c (t))

if one of the following conditions holds:

(i) δSy < Qc =
an

b(n + 1)
,

or
(ii) δSy > Qc =

an
b(n + 1)

, and S0 ∈ (0, S∞
2,N).

Proposition 6 demonstrates that at the stationary equilibrium, there exist condi-
tions under which cross-shareholdings between rival firms can lead to an increase
in the industry output. The result is quite surprising and sharply contrasts with the
predictions of static oligopoly and cross-ownership theory. Indeed, when a subset
of firms partially internalize their previous rivalry due to their ownership links, they
unilaterally reduce their production. But in terms of strategic substitutes in Cournot
competition, other non-participating firms will respond by expanding their produc-
tion, aiming to capture a larger market share. Nonetheless, the reduction in output
by cross-owners outweighs the production expansion by outsiders, resulting in an
overall decrease in industry production. In our context where an oligopoly exploits
a productive asset, this static result would hold if the initial resource stock is large
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enough and the implicit growth rate exceeds a certain threshold (i.e., S0 > S∞
2,N and

δ > an
bSy(n+1) ). However, when the implicit growth rate falls below a certain threshold

(i.e., δ < an
bSy(n+1) ) or the initial resource stock is small enough (i.e.,S0 < S∞

2,N), rival
cross-shareholdings can lead to an increase in the industry’s production. This is be-
cause in our dynamic framework with a productive common asset, cross-ownership
between rival firms influences the industry’s exploitation rate through two channels:
the output market and the interaction at the resource level. The former is the tradi-
tional channel through which reduced competition in the output market due to own-
ership links makes the industry output fall, while the latter is specific to the renewable
resource industry whereas cross-ownership between rival firms results in a larger long-
run stock of the asset and consequently allows for greater extraction by the industry.
Proposition 6 shows that the latter impact of cross-ownership dominates the former
one.

4.2 The dynamics of cross-ownership and long-run profitability

Despite our solid explanations on why cross-ownership could lead to an increased in-
dustry output in the long run, one might still question whether such a scenario would
ever materialize, as firms may not find it profitable to engage in cross-shareholdings
in the transition towards the steady-state level of the stock. To illustrate this, it is suffi-
cient to give some examples. For simplicity, we limit our analysis to the first situation
δSy < Qc =

an
b(n+1) where there is only one steady state before cross-ownership.

First, consider δSy < Qv =

(
(k+n−k2)v+n

)
a(

(k+n+1−k2)v+n+1
)

b
< Qc = an

b(n+1) in which there

is only one steady state before and after cross-ownership as shown in Figure 13. The
stationary asset stocks are given by S∞

1,N and S∞
1 , both falling into region III: S ∈ [S1, S2)

with S1 < S∞
1,N < S∞

1 < S2, and the associated long-run industry outputs are δS∞
1,N and

δS∞
1 , respectively. Therefore, the profitability function is given by

G∞(k, n, v, S∞) = (1 − (k − 1)v)W(S∞
1 )− Wc(S∞

1,N),

where S∞ = {S∞
1,N, S∞

1 }. To show that G∞(k, n, v, S∞) can be positive, we refer back to
the least possibly profitable case of k = 2, n = 3. Using parameter values of a = 5, b =

0.5, r = 0.15, Sy = 0.75, we consider v = 0.1 that is strictly unprofitable in the static
framework and choose δ = 9 that satisfies both Assumption 1 and condition (LC1).
Figure 16(a) reproduces the dynamic profitability as a function of S in the short run and
adds the long-run profitability when S∞ = {S∞

1,N, S∞
1 } = {0.2634, 0.2782} and G∞ =

0.0839. In the short run, for any S0 < Ŝ = 0.4065, the profitability of cross-ownership
is positive, while for any S0 > Ŝ, each of the two firms will find it unprofitable to hold
a 10% share of the other in a triopoly industry. That is, a symmetric cross-ownership
between two firms that is profitable at t = 0 if S0 < Ŝ will remain profitable throughout
the transition to the steady-state level of the stock. Moreover, the unprofitable cross-

37



ownership at t = 0 for S > Ŝ can become profitable as the stock evolves to the steady-
state value.

(a) Qc > Qv > δSy (b) Qc > δSy > Qv

Figure 16: Transition from short-run to long-run profitability

Now, let us look at the case of Qc = an
b(n+1) > δSy > Qv =

(
(k+n−k2)v+n

)
a(

(k+n+1−k2)v+n+1
)

b

in which there is only one positive stationary stock before cross-ownership given by
S∞

1,N and there are three positive stationary stocks after cross-ownership given by S∞
1 ,

S∞
2 and S∞

3 respectively, as shown in Figure 14. We continue to use the example of
k = 2, n = 3 and v = 0.1 but set δ = 9.95 that satisfies both Assumption 1 and
condition (LC2), while keeping the other parameter values unchanged. In this case, the
pair of long-run steady-state stocks can be either S∞

x = {S∞
1,N, S∞

1 } = {0.2395, 0.2528}
if S0 < S∞

2 = 0.7418 or S∞
y = {S∞

1,N, S∞
3 } = {0.2395, 0.7527} when S0 > S∞

2 = 0.7418
and the corresponding profitability is thus either

G∞
x (k, n, v, S∞

x ) = (1 − (k − 1)v)W(S∞
1 )− Wc(S∞

1,N) = 0.0706 > 0,

or
G∞

y (k, n, v, S∞
y ) =

πv
i

r
− Wc(S∞

1,N) = 0.6155 > 0.

A similar graph is produced in Figure 16(b) for the short-run profitability as a function
of S but only adds the long-run profitability G∞

x at S∞
x = {S∞

1,N, S∞
1 }. So at t = 0, a

symmetric cross-ownership between 2 firms in a 3-firm industry will profit from this
mutual shareholding of 10% if S0 < Ŝ = 0.3492, and they will continue to find it
profitable in the transition to the new steady state at S∞

x = {S∞
1,N, S∞

1 }. However, if
the initial stock is S0 ∈ (Ŝ, S∞

2 ) or S0 > S∞
2 , the profitability of cross-ownership is

strictly negative in the short run, but in the transition towards the new steady state,
this original unprofitability will transform into positive profitability with the former
converging to S∞

x and the latter to S∞
y .

Simulations using many other combinations of k, n, v can also find such results.
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These results thus confirm that firms will find it profitable to engage in cross-shareholdings
in the transition to the steady state of the stocks. Consequently, the long-run expan-
sion of industry production becomes a viable prospect, suggesting the potential for an
increase in consumer surplus in the long run as a result of cross-ownership.

4.3 The long-run welfare implications

Now let us turn to the comparison of CS, PS and welfare at the stationary equilibrium.
By Proposition 6, we know that the stationary CS is higher when firms engage in rival
cross-shareholdings than in the case without cross-ownership for δSy < Qc = an

b(n+1) ,
or δSy > Qc = an

b(n+1) and S0 ∈ (0, S∞
2,N). Thus, it remains to show that stationary

industry profits can also be higher in these scenarios as a result of cross-ownership.
We discuss the respective three cases in the following.

1. If δSy < Qv =

(
(k+n−k2)v+n

)
a(

(k+n+1−k2)v+n+1
)

b
< Qc = an

b(n+1) in which there is only one

stable steady state before and after cross-ownership, then the pair of stationary
asset stocks is given by S∞ = {S∞

1,N, S∞
1 }. Thus, the change in PS at the stationary

equilibrium is given by

∆PS(S∞) =

(
1 − (k − 1)v

)(
(−k2 + n + k)v + n

)
1 − (k − 2)v

W(S∞
1 )− nWc(S∞

1,N).

2. If Qv =

(
(k+n−k2)v+n

)
a(

(k+n+1−k2)v+n+1
)

b
< δSy < Qc = an

b(n+1) in which there is only one

positive stable stationary stock before cross-ownership and there are two posi-
tive stable stationary stocks after cross-ownership, then the pair of steady-state
stocks can be either S∞

x = {S∞
1,N, S∞

1 } or S∞
y = {S∞

1,N, S∞
3 }. The stationary PS

change in the former is

∆PS(S∞
x ) =

(
1 − (k − 1)v

)(
(−k2 + n + k)v + n

)
1 − (k − 2)v

W(S∞
1 )− nWc(S∞

1,N),

while that in the latter is given by

∆PS(S∞
y ) = PSv(S∞

3 )− PSc(S∞
1,N) =

kπv
i + (n − k)πv

o

r
− nWc(S∞

1,N)

3. Finally, if δSy > Qc = an
b(n+1) and S0 ∈ (0, S∞

2,N), the pair of stationary stocks is
either S∞

z = {S∞
1,N, S∞

1 } or S∞
w = {S∞

1,N, S∞
3 }, with the PS change at the stationary

equilibrium given by

∆PS(S∞
z ) =

(
1 − (k − 1)v

)(
(−k2 + n + k)v + n

)
1 − (k − 2)v

W(S∞
1 )− nWc(S∞

1,N),
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and

∆PS(S∞
w ) = PSv(S∞

3 )− PSc(S∞
1,N) =

kπv
i + (n − k)πv

o

r
− nWc(S∞

1,N),

respectively. It should be noted that S∞ = {S∞
1,N, S∞

1 } is not the same as S∞
x =

{S∞
1,N, S∞

1 } or S∞
z = {S∞

1,N, S∞
1 }, as these cases correspond to different initial con-

ditions when δSy < Qv < Qc, Qv < δSy < Qc and Qc < δSy. The same applies
to S∞

y and S∞
w .

We now show that the PS change at the stationary equilibrium is always positive, irre-
spective of the initial conditions, and thus we can establish the following result:

Proposition 7. Profitable rival cross-shareholdings can lead to a higher consumer surplus,
producer surplus and welfare at the stationary equilibrium for δSy < Qc =

an
b(n+1) , or δSy >

Qc =
an

b(n+1) and S0 ∈ (0, S∞
2,N).

Proof. See Appendix I.

Proposition 7 indicates that cross-ownership can turn out to be welfare-improving
in the long run. This result, combined with our findings in Result 3, suggests that wel-
fare can increase as a result of cross-shareholdings both in the short run and long run.
Therefore, antitrust authorities should exercise caution when regulating renewable re-
source industries, as strict policies that restrict cooperation among users of common-
pool renewable resources could ultimately harm consumers and society. Unintention-
ally, these measures might produce the exact opposite effect of what is intended.

5 Conclusion

In this paper, we have proposed a dynamic game of exploitation of a productive asset
by agents who subsequently sell the outcomes of their endeavours in an oligopolis-
tic market where a subset of the oligopolists owns a share in each other’s profits. A
Markov Perfect Nash Equilibrium of the game is constructed and used to analyze the
impact of cross-ownership on the equilibrium production strategies, the steady state
resource stocks, the profitability of cross-ownership, and social welfare. We show that
there exists an interval of the renewable resource stock for which a symmetric cross-
ownership can be profitable, even though such rival cross-shareholdings are unprof-
itable in the corresponding static equilibrium framework. Moreover, we demonstrate
that cross-ownership may not only lead to a higher market output and social welfare
in the short run, but also a higher steady-state stock, industry production, and greater
social welfare in the long run. These findings thus highlight the unique feature of the
renewable resource industries and suggest that antitrust authorities should perform a
specific examination when dealing with industries with stock dynamics.
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We have focused on cross-ownership arrangements that are fixed at the beginning
of the game, which made it easier to compare them with the corresponding static
framework. However, if the decision to participate in cross-shareholdings were en-
dogenous, we might expect more firms to join these "partial mergers". Yet, the endog-
enization of cross-ownership formation in this context remains complex and challeng-
ing, and we leave it for future research for which our model could serve as a useful
starting point. Another possible extension could involve integrating pollution exter-
nalities into our analysis, as cross-shareholdings might affect both resource stocks and
environmental quality. This aspect is particularly relevant because the drive for eco-
nomic gain can lead to environmental degradation, presenting significant sustainabil-
ity challenges. Understanding firms’ strategic behaviour in this context is thus crucial
for effective resource management and guiding regulatory policies (Vardar and Zac-
cour, 2020; Feichtinger et al., 2022).
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Appendices

A Proof of C1–C4

Proof. For the first inequality, it directly follows that

δ >

r
[(

k(k − 1)v − n(1 + v)
)2

+ (1 + v)2
]

2(1 + v)2 =

r
(

k(k − 1)v − n(1 + v)
)2

2(1 + v)2 +
r
2
>

r
2

.

For the second inequality, from δ >
r
[(

k(k−1)v−n(1+v)
)2

+(1+v)2
]

2(1+v)2 , we have

δ − r >
r
[(

k(k − 1)v − n(1 + v)
)2

− (1 + v)2
]

2(1 + v)2 .

We now show that(
k(k− 1)v−n(1+ v)

)2

− (1+ v)2 =

(
k(k− 1)v− (n− 1)(1+ v)

)(
k(k− 1)v− (n+ 1)(1+ v)

)
> 0.

Since
k ≤ n ⇒ k(k − 1)v ≤ n(n − 1)v,

we know that(
k(k− 1)v− (n− 1)(1+ v)

)
≤ n(n− 1)v− (n− 1)(1+ v) = (n− 1)

(
(n− 1)v− 1

)
< 0,

(
k(k− 1)v− (n+ 1)(1+ v)

)
≤ n(n− 1)v− (n+ 1)(1+ v) = n

(
(n− 2)v− 1

)
− (1+ v) < 0

and thus
δ − r > 0.

For the third inequality, note that from δ >
r
[(

k(k−1)v−n(1+v)
)2

+(1+v)2
]

2(1+v)2 ,

(2δ − r)(1 + v)2 > r
(
k(k − 1)v − n(1 + v)

)2,

⇐⇒ (2δ − r)(1 + v) > r

(
k(k − 1)v − n(1 + v)

)2

1 + v
.

We now show that

r

(
k(k − 1)v − n(1 + v)

)2

1 + v
> −r

(
k(k − 1)v − n(1 + v)

)
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⇐⇒
(

k(k − 1)v − n(1 + v)
)2

> n(1 + v)2 − kv(k − 1)(1 + v)

⇐⇒ k2(k − 1)2v2 − 2knv(k − 1)(1+ v) + n2(1+ v)2 − n(1+ v)2 + kv(k − 1)(1+ v) > 0

⇐⇒ k2(k − 1)2v2 − (2n − 1)kv(k − 1)(1 + v) + n(n − 1)(1 + v)2 > 0

⇐⇒
(

k(k − 1)v − n(1 + v)
)(

k(k − 1)v − (n − 1)(1 + v)
)
> 0,

which is true, since k ≤ n, we have

k(k − 1)v − n(1 + v) ≤ n(n − 1)v − n(1 + v) = n
(
(n − 2)v − 1

)
< 0,

k(k − 1)v − (n − 1)(1+ v) ≤ n(n − 1)v − (n − 1)(1+ v) = (n − 1)
(
(n − 1)v − 1

)
< 0.

Therefore,

(2δ − r)(1 + v) + r
(

k(k − 1)v − n(1 + v)
)
> 0.

Finally, for the last condition, note that both H1(k, n, v) ≡ r
[(

k(k−1)v−n(1+v)
)2

+(1+v)2
]

2(1+v)2

and H2(k, n, v) ≡ a
[(

k(k−1)v−n(1+v)
)2

+(1+v)2
]

bSy

(
(k+n+1−k2)v+n+1

)2 are strictly decreasing functions in v:

∂H1(k, n, v)
∂v

=

k(k − 1)r
(

k(k − 1)v − n(1 + v)
)

(1 + v)3 < 0,

∂H2(k, n, v)
∂v

=

2k(k − 1)a
(

k(k − 1)v − (n − 1)(1 + v)
)

bSy

(
(k + n + 1 − k2)v + n + 1

)3 < 0.

Thus, for any v ∈ (0, 1
k−1), Assumption 1 is equivalent to

δ > δ0 ≡ max {H1(k, n, 0),H2(k, n, 0)} = max
{

r(n2 + 1)
2

,
a(n2 + 1)

bSy(n + 1)2

}
.

B Proof of Proposition 1

Proof. The vector (ϕ∗
i , · · · , ϕ∗

i , ϕ∗
o , · · · , ϕ∗

o ) constitutes a MPNE if there exist n contin-
uously differentiable value functions (Vi, · · · , Vi, Vo, · · · , Vo) such that the functions
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ϕ∗
i (S) and ϕ∗

o (S) are solutions to the problems

rVi(S) = maxϕi

{
a − bϕ−i − bϕi

(1 + v)
(
1 − (k − 1)v

)((
1− (k− 2)v

)
ϕi + v ∑

m∈I\i
ϕm

)
+V′

i (S)(F(S)−ϕ−i −ϕi)

}
,

(13)
for i ∈ I = {1, 2, · · · , k} and

rVo(S) = maxϕo

{
(a − bϕ−o − bϕo)ϕo + V′

o(S)(F(S)− ϕ−o − ϕo)

}
, (14)

for o ∈ O = {k + 1, · · · , n}. Consider the following value functions

Vi(S) =



(
S
S1

i

) r
δ

W(S1
i ) for 0 ≤ S ≤ S1

i ,

W(S) for S1
i < S ≤ S2

i ,
Πi
r for S > S2

i ,

Vo(S) =


(1+v)

(
1−(k−1)v

)
1−(k−2)v

(
S
S1

o

) r
δ W(S1

o) for 0 ≤ S ≤ S1
o ,

(1+v)
(

1−(k−1)v
)

1−(k−2)v W(S) for S1
o < S ≤ S2

o ,
Πo
r for S > S2

o ,

where

Πi =
πv

i
1 − (k − 1)v

=
1

1 − (k − 1)v
(1 + v)

(
1 − (k − 2)v

)
a2(

(k + n + 1 − k2)v + n + 1
)2b

,

Πo = πo =
(1 + v)2a2(

(k + n + 1 − k2)v + n + 1
)2b

≡
(1 + v)

(
1 − (k − 1)v

)
1 − (k − 2)v

Πi,

W(S) =
A
2

S2 + BS + C,

with

A =

b(r − 2δ)
(
1 − (k − 2)v

)(
(k + n + 1 − k2)v + n + 1

)2

2(1 + v)
(
1 − (k − 1)v

)(
(k + n − k2)v + n

)2 ,

B =

a(2δ − r)
(
1 − (k − 2)v

)[(
k(k − 1)v − n(1 + v)

)2

+ (1 + v)2
]

2δ(1 + v)
(
1 − (k − 1)v

)(
(k + n − k2)v + n

)2 ,

C =
a2(1 − (k − 2)v

)
C1C2

4brδ2(1 + v)
(
1 − (k − 1)v

)(
(k + n − k2)v + n

)2(
(k + n + 1 − k2)v + n + 1

)2 ,

C1 =

(
2δ+ rk(k− 1)

(
2n− k(k− 1)

)
− r(n2 + 1)

)
v2 +

(
4δ+ 2rkn(k− 1)− 2r(n2 + 1)

)
v+ 2δ− r(n2 + 1),
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C2 =

(
(2δ− r)

(
k(k− 1)−n

)2 − r
)

v2 +

(
4δn2 + 2kn(k− 1)(r− 2δ)− 2r(n2 + 1)

)
v+ 2δn2 − r(n2 + 1),

S1
i =

(
1 − (k − 2)v

)
a − (1 + v)

(
1 − (k − 1)v

)
B

(1 + v)
(

1 − (k − 1)v
)

A
= S1

o , S2
i = − B

A
= S2

o .

In the following, we show that (i) the value functions Vi(S) and Vo(S) are continuously
differentiable; (ii) the functions ϕ∗

i (S) and ϕ∗
o (S) given by (5) and (6) are solutions to

the problems (13) and (14).
First, note that there exists a unique relationship between Vi(S) and Vo(S) such that

Vo(S) =
(1 + v)

(
1 − (k − 1)v

)
1 − (k − 2)v

Vi(S).

Therefore, we only need to prove that Vi(S) is continuously differentiable. Clearly, the
value function Vi(S) is continuously differentiable over (0, S1

i ), (S
1
i , S2

i ) and (S2
i , ∞),

respectively, with

V′
i (S) =


r

δS1
i

(
S
S1

i

) r
δ−1

W(S1
i ) for 0 ≤ S ≤ S1

i ,

W ′(S) for S1
i < S ≤ S2

i ,

0 for S > S2
i ,

We then need to check that the function Vi(S) is continuously differentiable at S1
i and

S2
i . We have

lim
S→S1

i ,S<S1
i

Vi(S) = W(S1
i ) = lim

S→S1
i ,S>S1

i

Vi(S),

and
lim

S→S2
i ,S<S2

i

Vi(S) = W(S2
i ) = Πi = lim

S→S2
i ,S>S2

i

Vi(S).

Thus, Vi(S) is continuous at both S1
i and S2

i . Also, note that

lim
S→S1

i ,S<S1
i

V′
i (S) =

r
δS1

i
W(S1

i ).

It can be easily checked that

r
δS1

i
W(S1

i ) = W ′(S1
i ) =

1 − (k − 2)v
(1 + v)

(
1 − (k − 1)v

) a.

Thus, we must have

lim
S→S1

i ,S<S1
i

V′
i (S) = W ′(S1

i ) = lim
S→S1

i ,S>S1
i

V′
i (S),
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i.e., V′
i (S) is continuous at S1

i . Similarly, we have

lim
S→S2

i ,S<S2
i

V′
i (S) = 0 = lim

S→S2
i ,S>S2

i

V′
i (S).

So V′
i (S) is continuous at both S1

i and S2
i . Therefore, we can conclude that both the

functions Vi(S) and Vo(S) are continuously differentiable over [0, ∞).
Next, we show that ϕ∗

i (S) and ϕ∗
o (S) given by (5) and (6) are solutions to the prob-

lems (13) and (14), where V1(S) = V2(S) = · · · = Vk(S), and Vk+1(S) = Vk+2(S) =

· · · = Vn(S). First, for S ≥ S1
i and S ≥ S1

o , the system of problems (13) and (14) admit
a pair of interior solutions. The HJB equation for firm i ∈ I is

rVi(S) = maxqi

{ a − b ∑j ̸=i qj − bqi

(1 + v)
(
1 − (k − 1)v

)((
1− (k− 2)v

)
qi + v ∑

m∈I\i
qm

)
+V′

i (S)(F(S)−∑
j ̸=i

qj − qi)

}
,

and that for firm o ∈ O is given by

rVo(S) = maxqo

{
(a − b ∑

j ̸=o
qj − bqo)qo + V′

o(S)(F(S)− ∑
j ̸=o

qj − qo)

}
.

FOCs of the right-hand side yield

(a − b ∑j ̸=i qj − bqi)(1 − (k − 2)v)− b
((

1 − (k − 2)v
)
qi + v ∑m∈I\i qm

)
(1 + v)

(
1 − (k − 1)v

) − V′
i (S) = 0,

and
a − b ∑

j ̸=o
qj − 2bqo − V′

o(S) = 0.

Symmetry yields

(a − bkqi − b(n − k)qo)(1 − (k − 2)v)− b(1 + v)qi

(1 + v)
(
1 − (k − 1)v

) − V′
i (S) = 0,

and
a − bkqi − b(n − k + 1)qo − V′

o(S) = 0.

So the best response functions can be expressed as

qi =

(
1 − (k − 2)v

)
a −

(
1 − (k − 2)v

)
(n − k)bqo − (1 + v)

(
1 − (k − 1)v

)
V′

i (S)[
1 + k +

(
1 − k(k − 2)

)
v
]

b
,

qo =
a − bkqi − V′

o(S)
b(n − k + 1)

.
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Guess the value function as

Vi(S) =
A
2

S2 + BS + C,

Vo(S) =
D
2

S2 + ES + F,

then
V′

i (S) = AS + B,

V′
o(S) = DS + E.

So the FOCs become

(a − bkqi − b(n − k)qo)(1 − (k − 2)v)− b(1 + v)qi = (AS + B)(1 + v)
(
1 − (k − 1)v

)
,

and
a − bkqi − b(n − k + 1)qo = DS + E.

Solving for (qi, qo) yields

q∗i =

(
1 − (k − 2)v

)
a − (1 + v)

(
1 − (k − 1)v

)
(n − k + 1)(AS + B) +

(
1 − (k − 2)v

)
(n − k)(DS + E)(

(k + n + 1 − k2)v + n + 1
)

b

(15)

q∗o =

(1 + v)a + (1 + v)
(

1 − (k − 1)v
)

k(AS + B)−
[

1 + k +
(

1 − k(k − 2)
)

v
]
(DS + E)(

(k + n + 1 − k2)v + n + 1
)

b

(16)

Substitute q∗i and q∗o into the HJB equations, then we have

r
(

A
2

S2 + BS + C
)
=

a − bkq∗i − b(n − k)q∗o(
1 − (k − 1)v

) q∗i + (AS + B)(δS − kq∗i − (n − k)q∗o),

r
(

D
2

S2 + ES + F
)
=

(
a − bkq∗i − b(n − k)q∗o

)
q∗o + (DS + E)(δS − kq∗i − (n − k)q∗o).

Using the undetermined coefficients technique (Dockner et al., 2000), we can solve for

A =

b(r − 2δ)
(
1 − (k − 2)v

)(
(k + n + 1 − k2)v + n + 1

)2

2(1 + v)
(
1 − (k − 1)v

)(
(k + n − k2)v + n

)2 , D =
(1 + v)

(
1 − (k − 1)v

)
1 − (k − 2)v

A,

B =

a(2δ − r)
(
1 − (k − 2)v

)[(
k(k − 1)v − n(1 + v)

)2

+ (1 + v)2
]

2δ(1 + v)
(
1 − (k − 1)v

)(
(k + n − k2)v + n

)2 , E =
(1 + v)

(
1 − (k − 1)v

)
1 − (k − 2)v

B,
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C =
a2(1 − (k − 2)v

)
C1C2

4brδ2(1 + v)
(
1 − (k − 1)v

)(
(k + n − k2)v + n

)2(
(k + n + 1 − k2)v + n + 1

)2 ,

C1 =

(
2δ+ rk(k− 1)

(
2n− k(k− 1)

)
− r(n2 + 1)

)
v2 +

(
4δ+ 2rkn(k− 1)− 2r(n2 + 1)

)
v+ 2δ− r(n2 + 1),

C2 =

(
(2δ− r)

(
k(k− 1)−n

)2 − r
)

v2 +

(
4δn2 + 2kn(k− 1)(r− 2δ)− 2r(n2 + 1)

)
v+ 2δn2 − r(n2 + 1),

F =
(1 + v)

(
1 − (k − 1)v

)
1 − (k − 2)v

C.

Therefore, we must have

V′
o(S) = DS + E =

(1 + v)
(
1 − (k − 1)v

)
1 − (k − 2)v

(AS + B) =
(1 + v)

(
1 − (k − 1)v

)
1 − (k − 2)v

V′
i (S).

Substituting these coefficients back to (15) and (16) yields

ϕ∗
i (S) = q∗i =

(
1 − (k − 2)v

)
a − (1 + v)

(
1 − (k − 1)v

)
(AS + B)(

(k + n + 1 − k2)v + n + 1
)

b
,

ϕ∗
o (S) = q∗o =

1 + v
1 − (k − 2)v

(
1 − (k − 2)v

)
a − (1 + v)

(
1 − (k − 1)v

)
(AS + B)(

(k + n + 1 − k2)v + n + 1
)

b
.

Moreover, it can be easily observed that there exists a unique relationship between ϕ∗
i

and ϕ∗
o such that

ϕ∗
o (S) =

1 + v
1 − (k − 2)v

ϕ∗
i (S).

The level of stocks S2
i and S2

o are determined such that Vi(S) and Vo(S) are continu-
ously differentiable in the neighborhood of S2

i and S2
o , respectively. Thus, we have

S2
i = − B

A
= S2

o .

Finally, for S < S1
i and S < S1

o , the system of problems (13) and (14) admit a pair of
corner solutions such that

ϕ∗
i (S) = 0 = ϕ∗

o (S).

Therefore, we must have

S1
i =

(
1 − (k − 2)v

)
a − (1 + v)

(
1 − (k − 1)v

)
B

(1 + v)
(
1 − (k − 1)v

)
A

= S1
o .
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C Proof of Corollary 1

Proof. The stationary asset stocks are characterized by

dS
dt

= F(S)− kϕ∗
i (S)− (n − k)ϕ∗

o (S) = F(S)− Φ∗
v(S).

(i) If F(S)max = δSy < Φ∗
v(S)max = kqv

i + (n − k)qv
o =

(
(k+n−k2)v+n

)
a(

(k+n+1−k2)v+n+1
)

b
, there is

one and only one positive root given by solving

dS
dt

= δS−
(

k+(n− k)
1 + v

1 − (k − 2)v

)(
1 − (k − 2)v

)
a −

(
1 − (k − 2)v − (k − 1)v2)(AS + B)(

(k + n + 1 − k2)v + n + 1
)
b

= 0,

which yields

S∞
1 =

a
[
(2δ − r)(1 + v)2 − r

(
k(k − 1)v − n(1 + v)

)2]
bδ

(
(k + n + 1 − k2)v + n + 1

)[
(2δ − r)(1 + v) + r

(
k(k − 1)v − n(1 + v)

)] .

To ensure S∞
1 > 0, we would need

(2δ − r)(1 + v)2 − r
(

k(k − 1)v − n(1 + v)
)2

> 0.

That is,

2δ − r >
r
(

k(k − 1)v − n(1 + v)
)2

(1 + v)2 ,

or

δ >

r
[(

k(k − 1)v − n(1 + v)
)2

+ (1 + v)2
]

2(1 + v)2 ,

which also guarantees that the condition (C3) is satisfied:

(2δ − r)(1 + v) + r
(

k(k − 1)v − n(1 + v)
)
> 0.

Moreover, we have

dS
dt

= F(S)− Φ∗
v(S) < 0, ∀ S > S∞

1 ,

and
dS
dt

= F(S)− Φ∗
v(S) > 0, ∀ S < S∞

1 .

Therefore, for any initial asset’s stock S0, the asset’s stock equilibrium path con-
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verges asymptotically to S∞
1 , i.e., S∞

1 is globally stable.

(ii) If F(S)max = δSy > Φ∗
v(S)max = kqv

i + (n − k)qv
o =

(
(k+n−k2)v+n

)
a(

(k+n+1−k2)v+n+1
)

b
, there are

three positive roots. One is given by S∞
1 , and the other two are given by solving

dS
dt

= δS −
(
(k + n − k2)v + n

)
a(

(k + n + 1 − k2)v + n + 1
)
b
= 0,

and
dS
dt

= δSy

(
1 − S
1 − Sy

)
−

(
(k + n − k2)v + n

)
a(

(k + n + 1 − k2)v + n + 1
)
b
= 0,

respectively. Solving for S yields

S∞
2 =

(
(k + n − k2)v + n

)
a(

(k + n + 1 − k2)v + n + 1
)
bδ

, S∞
3 = 1−

(
(k + n − k2)v + n

)
a(1 − Sy)(

(k + n + 1 − k2)v + n + 1
)
bδSy

.

Moreover, we have

dS
dt

= F(S)− Φ∗
v(S) > 0, ∀ 0 < S < S∞

1 ,

and
dS
dt

= F(S)− Φ∗
v(S) < 0, ∀ S∞

1 < S < S∞
2 .

Therefore, for any initial stock S0 ∈ (0, S∞
2 ), the asset’s stock equilibrium path

converges monotonically to S∞
1 , i.e., S∞

1 is stable. Also, we have

dS
dt

= F(S)− Φ∗
v(S) > 0, ∀ S∞

2 < S < S∞
3 ,

and
dS
dt

= F(S)− Φ∗
v(S) < 0, ∀ S > S∞

3 .

Therefore, for any initial stock S0 ∈ (S∞
2 , ∞), the asset’s stock equilibrium path

converges monotonically to S∞
3 , i.e., S∞

3 is stable. The stationary asset stock S∞
2 is

thus unstable.

D Proof of Lemma 1 and Lemma 2

Proof. Note that

S2(v) =
a
[(

k(k − 1)v − n(1 + v)
)2

+ (1 + v)2
]

bδ

(
(k + n + 1 − k2)v + n + 1

)2 , S1(v) =
a
[
(2δ − r)(1 + v)2 − r

(
k(k − 1)v − n(1 + v)

)2]
bδ(2δ − r)

(
(k + n + 1 − k2)v + n + 1

)2 ,
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and thus

∂S2(v)
∂v

=

2ak(k − 1)
(

k(k − 1)v − (n − 1)(1 + v)
)

bδ

(
(k + n + 1 − k2)v + n + 1

)3 ,

∂S1(v)
∂v

=

2ak(k − 1)
[
(2δ − r)(1 + v)− r

(
k(k − 1)v − n(1 + v)

)]
bδ(2δ − r)

(
(k + n + 1 − k2)v + n + 1

)3 .

Since k ≤ n, we have

k(k − 1)v − (n − 1)(1+ v) ≤ n(n − 1)v − (n − 1)(1+ v) = (n − 1)
(
(n − 1)v − 1

)
< 0,

and

k(k − 1)v − n(1 + v) ≤ n(n − 1)v − n(1 + v) = n
(
(n − 2)v − 1

)
< 0,

⇒ (2δ − r)(1 + v)− r
(

k(k − 1)v − n(1 + v)
)
> 0.

Therefore,
∂S1(v)

∂v
> 0,

∂S2(v)
∂v

< 0.

That is, for any v > 0, S1(v) > S1(0) = S1,N and S2(v) < S2(0) = S2,N.
In addition, we have

∂Ωo(v)
∂v

=

k(k − 1)(2δ − r)
(
(n + 2)(1 + v)− kv(k − 1)

)
2
(
(k + n − k2)v + n

)3 > 0,

since 2δ − r > 0,

(n+ 2)(1+ v)− kv(k− 1) ≥ (n+ 2)(1+ v)−nv(n− 1) = 2(1+ v)+n
(

1− (n− 2)v
)
> 0,

and
(k + n − k2)v + n = n + nv − k(k − 1)v ≥ n − k + nv > 0.

Moreover,

∂Ωi(v)
∂v

=

(k − 1)(r − 2δ)

[
n(n + 1)− k(n + 2) +

(
n(n + 1)− k2(n − k)− 3k

)
v
]

2
(
(k + n − k2)v + n

)3 .
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In the case of n = k,

∂Ωi

∂v
=

k(k − 1)(2δ − r)
(

1 − (k − 2)v
)

2
(
(2k − k2)v + k

)3 =
(k − 1)(2δ − r)

2k2
(

1 − (k − 2)v
)2 > 0.

That is, for any v > 0 and n = k, Ωi(v) > Ωi(0) = Ωc. However, in the case of n > k,
since r − 2δ < 0,

n(n + 1)− k(n + 2) = n(n − k + 1)− 2k ≥ 2n − 2k > 0,

and
F(k, n) ≡ n(n + 1)− k2(n − k)− 3k > 0, (C5)

we must have ∂Ωi
∂v < 0. We now prove that condition (C5) is always true for all n > k.

Note that F(k, n) is a quadratic U-shaped function of n:

F(k, n) = n2 + (1 − k2)n + k3 − 3k,

with
∆(k) = (1 − k2)2 − 4(k3 − 3k) = k4 − 2k2 + 1 − 4k3 + 12k.

Since

∆′(k) = 4k3 − 12k2 − 4k + 12 = 4(k + 1)(k − 1)(k − 3)


< 0 if k = 2

= 0 if k = 3

> 0 if k ≥ 4

,

we have the following cases:

1. If k = 2, ∆′(k) > 0 and ∆(2) = 9 − 4 × 2 = 1 > 0;

2. If k = 3, ∆′(k) = 0, and we have the minimum value: ∆(3) = 64 − 4 × 18 =

−8 < 0;

3. If k ≥ 4, ∆′(k) > 0 and since ∆(4) = 225 − 4 × 52 = 17 > 0, we must have
∆(k) > 0 for all k > 4.

That is,

1. when k = 2, F(2, n) = n2 − 3n + 2 = (n − 1)(n − 2) has two roots:

n1 = 1, n2 = 2.

Therefore, for any n > n2 = k = 2, we have F(2, n) > 0.
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2. When k = 3, F(k, n) has no real roots of n, and thus it is always positive, i.e.,

F(3, n) = n2 − 8n + 18 = (n − 4)2 + 2 > 0 ∀ n > k = 3.

3. However, when k ≥ 4, F(k, n) has two real roots n1 and n2:

n2 =
k2 − 1 +

√
∆(k)

2
> n1 =

k2 − 1 −
√

∆(k)
2

Thus, F(k, n) is strictly positive for any n > n2 or n < n1, and negative for any
n ∈ (n1, n2). We now show that for any n > k ≥ 4, n > n2 always holds. Is it
true that n > k > n2? Yes, indeed!

k > n2 =
k2 − 1 +

√
∆(k)

2

⇐⇒ (2k − k2 + 1)2 > (1 − k2)2 − 4(k3 − 3k)

⇐⇒ 4k2 + 4k(1 − k2) + 4(k3 − 3k) > 0

⇐⇒ 4k(k − 2) > 0

Therefore, for any v > 0 and n > k, we must have

Ωi(v) < Ωi(0) = Ωc = Ωo(0) < Ωo(v).

Finally, we show that

∂qv
i

∂v
=

a(k − 1)(k − n − 1)

b
(
(k + n + 1 − k2)v + n + 1

)2 < 0,

∂qv
o

∂v
=

ak(k − 1)

b
(
(k + n + 1 − k2)v + n + 1

)2 > 0.

Thus, for any v > 0,
qv

i (v) < qv
i (0) = qc = qv

o(0) < qv
o(v).
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E Proof of Proposition 2

Proof. Note that when n = k,

S2 =

a
[(

k(k − 1)v − n(1 + v)
)2

+ (1 + v)2
]

bδ

(
(k + n + 1 − k2)v + n + 1

)2 =

a
[

n2(1 − (n − 2)v
)2

+ (1 + v)2
]

bδ

(
(2n + 1 − n2)v + n + 1

)2 ,

we thus have

ϕ∗
i (S2)− ϕ∗

c (S2) =

(
1 − (n − 2)v

)
a(

(2n + 1 − n2)v + n + 1
)
b
− a − (XS2 + Y)

(n + 1)b

=
av(n − 1)Γ

bδn(n + 1)
(
(2n + 1 − n2)v + n + 1

)2 ,

where
Γ = n2(δ − r)(1 − (n − 2)v)− (2δ − r + δn)(1 + v).

Therefore, ϕ∗
i (S2)− ϕ∗

c (S2) has the same sign as Γ. We can express Γ as

Γ(n, v) ≡
[
(r − δ)

(
n2(n − 2)

)
+ r − 2δ − nδ

]
v + (n + 1)

(
r − 2δ + n(δ − r)

)
,

where Γ(n, v) is a linear function in v with

∂Γ(n, v)
∂v

= (r − δ)
(
n2(n − 2)

)
+ r − 2δ − nδ < 0,

since 2δ − r > 0 and δ − r > 0.
Note that

Γ(n, 0) = (n + 1)
(
r − 2δ + n(δ − r)

)
= (n + 1)

(
(n − 2)δ − (n − 1)r

)
,

so when n = 2, Γ(n, 0) < 0, and for n ≥ 3, we have Γ(n, 0) > 0 if δ > n−1
n−2r, and

Γ(n, 0) < 0 if δ < n−1
n−2r. But from Assumption 1 and condition (C4), we need to ensure

that

δ >
(n2 + 1)

2
r.

It can be easily observed that for all n ≥ 3,

(n2 + 1)
2

− n − 1
n − 2

=
n(n2 − 2n − 1)

2(n − 2)
> 0,
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and thus

δ >
(n2 + 1)

2
r >

n − 1
n − 2

r.

Therefore, we have Γ(n, 0) < 0 for n = 2 and Γ(n, 0) > 0 for n ≥ 3.
Also, note that

Γ(n,
1

n − 1
) =

[
(r − δ)

(
n2(n − 2)

)
+ r − 2δ − nδ

]
1

n − 1
+ (n + 1)

(
r − 2δ + n(δ − r)

)
= −n(2δ − r + nr)

n − 1
< 0.

Given the linearity of the function Γ(n, v), we must have Γ(n, v) < 0 for all n = 2
and v ∈ (0, 1

n−1), and when n ≥ 3, there must exist some threshold shareholding v̂
such that Γ(n, v) > 0 for any v ∈ (0, v̂) and Γ(n, v) < 0 for any v ∈ (v̂, 1

n−1), where
Γ(n, v̂) = 0, i.e.,

v̂ =

(n + 1)
(

r − 2δ + n(δ − r)
)

(δ − r)
(
n2(n − 2)

)
+ 2δ − r + nδ

> 0.

We now show that v̂ is less than the upper bound of shareholdings 1
n−1 by direct com-

parison:

v̂ =
(n + 1)

(
r − 2δ + n(δ − r)

)
(δ − r)

(
n2(n − 2)

)
+ 2δ − r + nδ

<
1

n − 1
,

⇐⇒ (n2 − 1)
(
r − 2δ + n(δ − r)

)
< (δ − r)

(
n2(n − 2)

)
+ 2δ − r + nδ,

⇐⇒ −n(2δ − r + nr) < 0.

To conclude, we have the following cases:

1. If n = 2, then ϕ∗
i (S2) < ϕ∗

c (S2) for all v ∈ (0, 1
n−1);

2. If n ≥ 3, then ϕ∗
i (S2) < ϕ∗

c (S2) for v ∈ (v̂, 1
n−1), ϕ∗

i (S2) = ϕ∗
c (S2) when v = v̂,

and ϕ∗
i (S2) > ϕ∗

c (S2) for v ∈ (0, v̂).

Given that S1 > S1,N, S2 < S2,N, qc > qv
i and Ωi > Ωc (from Lemma 1), we must have

the following scenarios:

1. For any n = k = 2 and v ∈ (0, 1
n−1), or n = k ≥ 3 and v ∈ [v̂, 1

n−1), ϕ∗
c (S) ≥

ϕ∗
i (S);

2. For any n = k ≥ 3 and v ∈ (0, v̂), there exists a Ŝ1 ∈ (S1, S2) and a Ŝ2 ∈ (S2, S2,N)

such that ϕ∗
i (S) > ϕ∗

c (S) if and only if Ŝ1 < S < Ŝ2.
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F Proof of Lemma 3

Proof. Note that

dQv

dv
= − ak(k − 1)

b
(
(k + n + 1 − k2)v + n + 1

)2 < 0,
dζv

dv
=

k(k − 1)(2δ − r)

2
(
(k + n − k2)v + n

)2 > 0

Therefore, for any n ≥ k ≥ 2 and v > 0, we have

Qv(v) < Qv(0) = Qc, ζv(v) > ζv(0) = ζc.

G Proof of Proposition 4

Proof. Note that

Φ∗
v(S2)− Φ∗

c (S2) =

(
(−k2 + n + k)v + n

)
a(

(k + n + 1 − k2)v + n + 1
)
b
− n(a − (XS2 + Y)

(n + 1)b

=

akv(k − 1)
[

n(δ − r)
(

n(1 + v)− k(k − 1)v
)
− (2δ − r + δn)(1 + v)

]
bδn(n + 1)

(
(k + n + 1 − k2)v + n + 1

)2 .

Thus, for any v ∈ (0, 1
k−1) and n > k ≥ 2, Φ∗

v(S2)− Φ∗
c (S2) has the same sign as

Θ(k, n, v) ≡ n(δ − r)
(

n(1 + v)− k(k − 1)v
)
− (2δ − r + δn)(1 + v)

=

[
(n + 1)

(
(n − 2)δ − (n − 1)r

)
− k(k − 1)n(δ − r)

]
v + (n + 1)

(
(n − 2)δ − (n − 1)r

)
,

which is linear in v. Notice that

Θ(k, n, 0) = (n + 1)
(
(n − 2)δ − (n − 1)r

)
,

therefore, we can rewrite Θ(k, n, v) as

Θ(k, n, v) =
(

Θ(k, n, 0)− k(k − 1)n(δ − r)
)

v + Θ(k, n, 0),
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and we have

Θ(k, n,
1

k − 1
) =

(
Θ(k, n, 0)− k(k − 1)n(δ − r)

)
1

k − 1
+ Θ(k, n, 0)

=
k

k − 1

[(
n(n − k)− 2

)
δ −

(
n(n − k) + n − 1

)
r
]

.

From Assumption 1 and condition (C4), we need to ensure that

δ >
(n2 + 1)

2
r.

It can be easily shown that for all n > k ≥ 2,

(n2 + 1)
2

− n − 1
n − 2

=
n(n2 − 2n − 1)

2(n − 2)
> 0,

and
(n2 + 1)

2
− n(n − k) + n − 1

n(n − k)− 2
=

n(n + 1)
(
(n − 1)(n − k)− 2

)
2
(
n(n − k)− 2

) ≥ 0.

Therefore, we have

δ >
(n2 + 1)

2
r >

n − 1
n − 2

r > r,

and

δ >
(n2 + 1)

2
r ≥ n(n − k) + n − 1

n(n − k)− 2
r > r,

which means that for any n > k ≥ 2,

Θ(k, n, 0) > 0, Θ(k, n,
1

k − 1
) ≥ 0.

This combined with the fact that Θ (k, n, v) is linear in v completes the proof that
Θ (k, n, v) > 0 and thus Φ∗

v(S2) > Φ∗
c (S2) for all n > k ≥ 2 and v ∈ (0, 1

k−1). Given
that S1 > S1,N and S2 < S2,N (from Lemma 2), and Qv < Qc and ζv > ζc (from Lemma
3), there must exist a S̃1 ∈ (S1, S2) and a S̃2 ∈ (S2, S2,N) such that Φ∗

v(S) > Φ∗
c (S) for

any S ∈ (S̃1, S̃2).

H Proof of Lemma 4

Proof. The stationary resource stocks with cross-ownership are given by

S∞
1 (v) =

a
[
(2δ − r)(1 + v)2 − r

(
k(k − 1)v − n(1 + v)

)2]
bδ

(
(k + n + 1 − k2)v + n + 1

)[
(2δ − r)(1 + v) + r

(
k(k − 1)v − n(1 + v)

)]
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S∞
2 (v) =

a
(
(k + n − k2)v + n

)
bδ

(
(k + n + 1 − k2)v + n + 1

) , S∞
3 (v) = 1−

a(1 − Sy)

(
(k + n − k2)v + n

)
bδSy

(
(k + n + 1 − k2)v + n + 1

) ,

while those without cross-ownership are denoted by

S∞
1,N = S∞

1 (0) =
a(2δ − r(1 + n2)

bδ(1 + n)(2δ − r(1 + n))
,

S∞
2,N = S∞

2 (0) =
an

bδ(1 + n)
, S∞

3,N = S∞
3 (0) = 1 −

an(1 − Sy)

bδSy(1 + n)
.

Then, we have

∂S∞
1

∂v
=

2ak(k − 1)(δ − r)
[
(2δ − r)(1 + v)2 + r

(
k(k − 1)v − n(1 + v)

)2]
bδ

(
(k + n + 1 − k2)v + n + 1

)2[
(2δ − r)(1 + v) + r

(
k(k − 1)v − n(1 + v)

)]2 > 0

∂S∞
2

∂v
= − ak(k − 1)

bδ

(
(k + n + 1 − k2)v + n + 1

)2 < 0

∂S∞
3

∂v
=

ak(k − 1)(1 − Sy)

bδSy

(
(k + n + 1 − k2)v + n + 1

)2 > 0

Therefore, for any v > 0, S∞
1 (v) > S∞

1 (0) = S∞
1,N, S∞

2 (v) < S∞
2 (0) = S∞

2,N and S∞
3 (v) <

S∞
3 (0) = S∞

3,N.

I Proof of Proposition 7

Proof. We need to show that for all δ that satisfies Assumption 1, ∆PS(S∞
1,N, S∞

1 ) > 0
and ∆PS(S∞

1,N, S∞
3 ) > 0. First, we have

∆PS(S∞
1,N , S∞

1 ) =

(
1 − (k − 1)v

)(
(−k2 + n + k)v + n

)
1 − (k − 2)v

W(S∞
1 )− nWc(S∞

1,N)

=
2a2k(k − 1)v(δ − r)Ω1Ω2

br(n + 1)2(2δ − r − nr)2
(
(k + n + 1 − k2)v + n + 1

)2(
(2δ − r − nr)(1 + v) + k(k − 1)rv

)2 ,

where

Ω1(v) = (2δ − r + n2r)(1 + v)− k(k − 1)nrv

=

(
2δ − r + n2r − k(k − 1)nr

)
v + 2δ − r + n2r,
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Ω2 =k2(k − 1)2v2r(2δ − r(1 + n2))− 2knv(k − 1)(1 + v)
(

2δ(δ − r)− r2(n2 − 1)
)

+ (1 + v)2(n2 − 1)(2δ − r + nr)(2δ − r(1 + n)).

Note that Ω1(v) is a linear function in v with

Ω1(0) = 2δ − r + n2r > 0,

Ω1(
1

k − 1
) =

(2δ − r + n2r)(k − 1)− k(k − 1)nr
k − 1

> 0

=

2δ(k − 1) +
(

n(n − k)− 1
)
(k − 1)r

k − 1
> 0,

and thus Ω1(v) > 0 for all v ∈ (0, 1
k−1). We also have

Ω2 =k2(k − 1)2v2r(2δ − r(1 + n2))− 2knv(k − 1)(1 + v)
(

2δ(δ − r)− r2(n2 − 1)
)

+ (1 + v)2(n2 − 1)(2δ − r + nr)(2δ − r(1 + n))

=k(k − 1)v
[

4n(1 + v)δ(δ − r)− 2k(k − 1)δrv +

(
k(k − 1)(n2 + 1)v − 2n(1 + v)(n2 − 1)

)
r2
]

+ (1 + v)2(n2 − 1)(2δ − r + nr)(2δ − r(1 + n)) > 0.

Therefore, we must have

∆PS(S∞
1,N, S∞

1 ) > 0, ∀ δ >
(n2 + 1)

2
r.

Next, notice that

∆PS(S∞
1,N, S∞

3 ) =
kπv

i + (n − k)πv
o

r
− nWc(S∞

1,N)

=
a2Λ1Λ2

br(n + 1)2(2δ − r − nr)2
(
(k + n + 1 − k2)v + n + 1

)2 ,

where
Λ1 = k(k − 1)v

(
2δ − r(1 + n2)

)
+ nr(n2 − 1)(1 + v) > 0,

and

Λ2(v) =
(
(n2 − 1)(2δ − r)− 2kn(δ − r)(k − 1)

)
v + (n2 − 1)(2δ − r),
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which is a linear function in v with

Λ2(0) = (n2 − 1)(2δ − r) > 0

and

Λ2(
1

k − 1
) =

k
k − 1

(
(2δ − r)(n2 − 1)− 2n(δ − r)(k − 1)

)
=

k
k − 1

[(
2n(n − k) + 2(n − 1)

)
δ −

(
(n2 − 1)− 2n(k − 1)

)
r
]

>
k

k − 1

[(
2n(n − k) + 2(n − 1)

)
(n2 + 1)

2
r −

(
(n2 − 1)− 2n(k − 1)

)
r
]

=
knr

k − 1
(n2 − 1)(n − k + 1) > 0.

Then, we must have Λ2(v) > 0 for all v ∈ (0, 1
k−1) and thus

∆PS(S∞
1,N, S∞

3 ) > 0, ∀ δ >
(n2 + 1)

2
r.

64


	WP 2024-09-Couv

