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Abstract
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ingly profitable in either levels or ratios, and it is most beneficial when the degree

of competition takes on intermediate values. These static results also carry over

to the case of a dynamic nonrenewable differentiated oligopoly. However, the

dynamic case exhibits lower profitability when the initial resource stock owned

by each differentiated firm is small enough, which is in sharp contrast with the
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1 Introduction

In this paper, we examine whether the conclusions reached in the static benchmark can
be extended to the case of differentiated nonrenewable resource oligopolies when rival
firms compete à la Bertrand and engage in cross-shareholdings. Instead of product
homogeneity, we assume that different varieties of similar products exist in the market,
which is a more accurate reflection of reality. Moreover, there are numerous industries in
which firms compete in a way that is more consistent with Bertrand competition. Using
models with quantity competition to investigate price competition would often end up
with unreliable results and give misleading policy implications. For example, Colombo
and Labrecciosa (2015) find that the traditional result that the Bertrand equilibrium is
more efficient than the Cournot equilibrium does not necessarily hold in a dynamic
oligopolistic model of exploitation of a renewable productive asset.

Indeed, firms seldom sell exactly the same products. Take the global oil market as
an example; there are different types of crude oil, e.g., Brent, West Texas Intermediate
(WTI), Western Canadian Select (WCS), Dubai Fateh, Murban, Urals, and their prices
differ substantially due to quality, regional infrastructure, and geopolitical events.1

Brent and WTI often command higher prices due to their lighter, sweeter crude quality,
while WCS is a heavier, sour crude with higher sulphur content, resulting in a relatively
lower price than the two.2 Meanwhile, Dubai Fateh and Murban are key benchmarks
for Middle Eastern oil, with Dubai Fateh a medium-sour crude oil and Murban being
a light crude, prices of which are highly affected by Asian demand, shipping costs,
and OPEC production levels.3 Finally, Urals is a heavy, sour crude oil blend from
Russia. Its higher sulphur content and heavier nature, combined with the western
sanctions, have made it trade at a huge discount compared to other oils.4 In the
case of coal, high-rank varieties such as anthracite and metallurgical bituminous ones
often command premium prices than those lower ranked lignite and sub-bituminous
grades, due to their high energy density and industrial applications (IEA, 2023). In
another example, the critical metal nickel – essential for battery production in the
energy transition – exhibits significant product heterogeneity, as nickel ores exist in
two types of deposits: sulphide and laterite (IRENA, 2023). The former deposits are
mainly found in Australia, Canada and Russia, and contain higher-grade nickel that
can be more easily processed into Class 1 battery-grade nickel, while the latter ones
are mainly produced from Indonesia and the Philippines, which contain relatively
lower-grade nickel that requires additional energy-intensive processing for conversion

1See https://oilprice.com/oil-price-charts/ for prices across different types of crude oils.
2See https://www.oilsandsmagazine.com/technical/western-canadian-select-wcs/.
3See https://www.oxfordenergy.org/publications/dubai-we-have-a-problem-murban-and-mid

dle-east-crude-pricing/ and https://www.reuters.com/business/energy/murban-crude-prices-dro
p-opec-raises-output-prompting-surge-volumes-asia-2025-05-23/.

4https://www.reuters.com/markets/commodities/russian-urals-oil-prices-fell-lowest-level-since
-2023-brent-price-collapsed-2025-04-07/ and https://energyandcleanair.org/june-2025-monthly-ana
lysis-of-russian-fossil-fuel-exports-and-sanctions/.
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into battery-grade nickel (Paraskova, 2022). These low- and higher-grade nickel ores act
as imperfect substitutes, competing in distinct yet interconnected markets (Kooroshy,
Preston and Bradley, 2014).

Taking into account this specific feature in exhaustible industries, together with
the widely existing cross-shareholding activities among mining firms (Kumar, 2012;
Benchekroun, Breton and Chaudhuri, 2019; Benchekroun, Dai and Long, 2022), we intro-
duce product differentiation à la Dai, Benchekroun and Long (2022) and investigate the
impact of cross-ownership in a differentiated product oligopoly. We first characterize
the static and dynamic equilibrium outcomes under a k−symmetric cross-ownership
structure in which a subset of k ≤ n firms engage in rival cross-shareholdings and each
firm has an equal silent financial interest in the other firms, while the remaining n − k
firms stay independent.

We show that in a static model, when firms engage in price competition in an
oligopolistic industry consisting of symmetrically differentiated products, rival cross-
shareholdings will increase both cross-ownership participants and non-participants’
product prices, but cross-owners will reduce their output while outsiders take a free ride
by expanding their production. These results are consistent with the predictions from
the static oligopoly and cross-ownership theory, which conceptualize cross-ownership
as a form of "partial merger" that entails anti-competitive effects (Reynolds and Snapp,
1986; Bresnahan and Salop, 1986; Farrell and Shapiro, 1990; Flath, 1991, 1992; O’Brien
and Salop, 2000; Dietzenbacher, Smid and Volkerink, 2000; Brito, Cabral and Vas-
concelos, 2014; Brito, Ribeiro and Vasconcelos, 2014; Brito et al., 2018; Benndorf and
Odenkirchen, 2021; Hariskos, Königstein and Papadopoulos, 2022).

Further, using a dynamic game model in which firms compete à la Bertrand while
each differentiated firm faces a resource stock constraint, i.e., the output of each resource-
extracting firm is constrained by its limited initial resource stock, we characterize an
open-loop Nash-Bertrand cross-ownership equilibrium (OL-NBCOE) of the game.
We find that under the k-symmetric cross-ownership structure, outsiders start with
a higher exploitation rate but charge a lower product price compared to the cross-
owners. As more resources gets depleted, this trend reverses, and eventually, the
outsiders will exhaust their stocks earlier than the cross-ownership participants at
any resource stock level, leading to increasingly concentrated supply over time. This
result resembles the ‘oil’igopoly theory (Loury, 1986; Polasky, 1992), which predicts
that small firms will deplete their reserves before large ones do, potentially leading to
eventual market monopolization. The increased concentration over time induced by
rival cross-shareholdings confers market power on those cross-ownership participants.
As such, the cross-owners can raise prices more than in other industries without stock
constraints.

Next, we move to investigate the profitability of cross-ownership in the differen-
tiated product oligopoly. Our results indicate that the static profitability is always
positive, irrespective of the degree of cross-ownership or the intensity of market com-
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petition. In addition, cross-ownership is increasingly profitable in either levels or
ratios, and it is most beneficial when the degree of competition takes on intermediate
values. This result bears some similarity with the merger result in Deneckere and
Davidson (1985). Moreover, we find that these static results also carry over to the case
of a dynamic nonrenewable differentiated oligopoly. However, it can be shown that
when the initial resource stock owned by each firm is small enough, a k-symmetric
cross-ownership yields less profit gains in the case of a differentiated nonrenewable
resource oligopoly than other industries without stock constraints. This result sharply
contrasts with the typical conclusion obtained in the resource game under Cournot
competition, where the presence of resource scarcity makes it more likely to be prof-
itable even under the scenario for which it is strictly unprofitable in the corresponding
static framework (Benchekroun, Breton and Chaudhuri, 2019; Dai, Benchekroun and
Long, 2022).5 Unlike in the quantity competition setting, where outsiders are more
constrained in their response to any output reduction brought by insiders due to their
limited resource stocks, the resource constraints seem to work in the opposite direction
here by inducing the outsiders to aggressively lower their product price and expand
their production under price competition. Consequently, this intensified competition
reduces the profitability of cross-ownership in a differentiated nonrenewable resource
oligopoly when the resource stock is small.

Finally, we compare the static and dynamic welfare effects of cross-ownership.
While a k-symmetric cross-ownership in a differentiated Bertrand oligopoly is never
welfare-improving in both cases, we find that the welfare loss can be smaller in the
dynamic case than in the static one, provided that the initial resource stock owned
by each differentiated firm is small enough. This occurs because after the outsiders
exhaust their resource stocks, the market will be monopolized by the group of cross-
owners, who can then raise their product prices much higher. While higher prices are
detrimental to consumer surplus, they nevertheless extend the duration over which the
resources can be exploited. As resources become increasingly scarce, the availability
and extended periods of use of these resources partially offset the negative effect of
higher prices on the consumer surplus. Consequently, the smaller loss in consumer
surplus due to increased scarcity and the increased profits due to higher prices will
result in a smaller welfare loss in the case of a differentiated nonrenewable resource
oligopoly than that in the static case.

The remainder of the paper is structured as follows. Section 2 first presents the
static model in a differentiated product oligopoly and then the dynamic model of a
differentiated nonrenewable resource industry. Section 3 conducts the profitability

5Similarly, in the dynamic games of exploitation of common-pool renewable resources, Benchekroun
and Gaudet (2015); Colombo and Labrecciosa (2018); Dai, Benchekroun and Dahmouni (2024) show that
industry output and consumer surplus can increase following full or partial cooperation among resource
users. Meanwhile, Benchekroun, Chaudhuri and Tasneem (2020) demonstrate that Free Trade may lead
to a lower discounted sum of consumer surplus and of social welfare than Autarky. These surprising
results, obtained within the dynamic Cournot oligopoly framework, sharply contrast with the static
outcomes.
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analysis of cross-ownership. Section 4 provides a welfare analysis. Finally, Section 5
concludes with the summary of our findings.

2 Bertrand competition in a differentiated oligopoly

2.1 The static model

We consider an oligopolistic industry consisting of n symmetrically differentiated
products, each produced by a separate firm. Denote the set of firms as J = {1, 2, · · · , n},
indexed by j. Firms compete à la Bertrand and own the exclusive technology for the
production of their particular product. Marginal costs are constant and identical across
all firms, assumed at c = 0 for simplicity. Suppose the demand for firm j’s product
is a function of the prices (p1, p2, · · · , pn). There is a numeraire good, called good q0,
in the background, and p0 = 1. Following Shubik and Levitan (2013) and Singh and
Vives (1984), we specify the utility function as linear in good q0 and quadratic in good
(q1, q2, · · · , qn) :

U(q0, q1, q2, · · · , qn) = q0 + V
n

∑
j=1

qj −
n + γ

2n(1 + γ)

n

∑
j=1

q2
j −

γ

n(1 + γ) ∑
j ̸=l

qlqj,

where V is a positive constant, and γ ≥ 0 is a substitutability parameter representing the
product differentiation across goods. Without loss of generality, we set V = 1 in what
follows. As γ increases, product differentiation decreases. When γ approaches zero,
goods become unrelated, and each firm becomes a monopoly of its specific product.
When γ approaches infinity, goods become perfect substitutes. The consumer surplus
can thus be defined as the utility minus the payments for the goods:

CS = U(q0, q1, q2, · · · , qn)−
n

∑
j=0

pjqj.

Then, the demand function for firm j is given by

qj(p1, p2, · · · , pn) = 1 − pj − γ

(
pj −

1
n

n

∑
l=1

pl

)
, j, l ∈ J.

Following Dai, Benchekroun and Long (2022), we consider a situation in which a
subset of k firms (2 ≤ k ≤ n) engage in rival cross-shareholdings and each firm has
an equal ownership stake v in the other firms, while the remaining n − k firms stay
independent. We use the subsets I = {1, 2, · · · , k}, indexed by i and O = {k+ 1, · · · , n},
indexed by o, referring to the insiders and outsiders to the cross-ownership, respectively.
In an industry characterized by rival cross-shareholdings, the aggregate profits of firm j
consist not only of its own operating profits but also a share of profits in the competitors
through its direct and indirect ownership links (Flath, 1992; Gilo, Moshe and Spiegel,
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2006). Then, firm j’s problem can be expressed as

max
pj≥0

Πj = πj + v ∑
i ̸=j

Πi = pjqj(p1, p2, · · · , pn) + v ∑
i ̸=j

Πi,

where πj = pjqj(p1, p2, · · · , pn) denotes firm j’s operating profits and v represents firm
j’s fractional shareholdings in firm i for any i ̸= j. We make the following assumption:

Assumption 1. Each firm seeks to maximize the value of its aggregate profits, but controls
only its own price decision pj, with rival shareholdings 0 < v < 1

k−1 , i.e., firms only have a
silent financial interest or non-controlling minority stake in the rivals.

Assumption 1 guarantees that the aggregate stake of rivals in each cross-ownership
participant (k − 1)v is less than 1. Let Π, p and q denote the n × 1 vectors of aggregate
profits, prices and outputs, respectively, and D denote the n × n cross-shareholding
matrix, then the aggregate profit functions can be expressed in matrix form as

Π = pq(p) + DΠ,

where D =

[
Akk 0
0 0n−k

]
, and Akk is a k × k matrix with element 0 in the diagonal

and v off-diagonal. This set of n equations implicitly defines the aggregate profits for

each differentiated firm. Then I − D =

[
Bkk 0
0 In−k

]
, where Bkk is a k × k matrix with

element 1 in the diagonal and −v off-diagonal, and In−k denote the (n − k)× (n − k)
identity matrix.

Under Assumption 1, matrix I − D is invertible and thus the aggregate profit
function for each differentiated firm can be solved as:

Π = (I − D)−1pq(p) =

[
B−1

kk 0
0 In−k

] [
pq(p)

]
,

where B−1
kk is given by the following matrix

Ω ≡ 1
f (v)


1 − (k − 2)v v · · · v

v 1 − (k − 2)v · · · v
...

... . . . ...
v v · · · 1 − (k − 2)v

 ,

with f (v) = (1 + v)
(
1 − (k − 1)v

)
> 0. The aggregate profit function of firm i ∈ I is

thus given by

Πi =
1

f (v)

[(
1 − (k − 2)v

)
πi + v ∑

m∈I\i
πm

]
=

1
f (v)

[(
1 − (k − 2)v

)
piqi + v ∑

m∈I\i
pmqm

]
,
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while for firm o ∈ O, the aggregate profit function is

Πo = πo = poqo.

Firm j takes other firms’ prices (p−j) as given and chooses pj to maximize its aggregate
profit. The first-order conditions yield

(
1− (k− 2)v

)[
1− pi −γ

(
pi −

1
n

n

∑
j=i

pj

)
− pi

(
1 + γ(1 − 1

n
)

) ]
+ v ∑

m∈I\i
pm

(γ

n

)
= 0,

1 − po − γ

(
po −

1
n

n

∑
j=1

pj

)
− po

(
1 + γ(1 − 1

n
)

)
= 0.

Exploiting symmetry, the interior solution yields the static Bertrand equilibrium prices
with cross-ownership as

pv
i =

n
(
1 − (k − 2)v

)(
2n + (2n − 1)γ

)
F(v)

, (1)

pv
o =

n
(
2n
(
1 − (k − 2)v

)
(1 + γ)− (1 + v)γ

)
F(v)

, (2)

and thus the corresponding equilibrium quantities are

qv
i =

(
2n + (2n − 1)γ

)((
1 − (k − 2)v

)
(1 + γ)n − (1 + v)γ

)
F(v)

, (3)

qv
o =

(
n + (n − 1)γ

)(
2n
(
1 − (k − 2)v

)
(1 + γ)− (1 + v)γ

)
F(v)

, (4)

where F(v) = A + Bv > 0,6 with

A =
(
2n + (2n − 1)γ

)(
2n + (n − 1)γ

)
> 0,

B = −
(
(n − 1)(2n(k − 2) + 1) + k(k − 1)

)
γ2 − 2n

(
k(3n − 1)− 3(2n − 1)

)
γ − 4n2(k − 2).

As a comparison, the standard equilibrium Bertrand price and quantity without cross-
ownership are obtained by setting v = 0:

pb =
n

2n + (n − 1)γ
, qb =

n + (n − 1)γ
2n + (n − 1)γ

. (5)

Then, we can easily establish the following result:

Proposition 1. For any γ ≥ 0, 2 ≤ k ≤ n and 0 < v < 1
k−1 ,

(i) pv
i > pv

o > pb and qb
o > qb > qb

i ;

(ii) pv
i , pv

o and qv
o increase in v, but qv

i decreases in v.
6See Appendix A for the proof.
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Proof. See Appendix A.

A symmetric cross-ownership between a subset of firms in the industry increases
both the insiders’ and outsiders’ product prices over the standard Bertrand one, but
the magnitude is larger for insiders than for outsiders. At the same time, cross-owners
reduce their quantities, but outsiders expand their production, following the rival
cross-shareholdings. These results are highly intuitive. Indeed, when firms have an
ownership stake in their rivals, they will have an incentive to compete less aggressively
and thus unilaterally increase their prices and reduce their quantities, as one firm’s gain
may come at the loss of the other firms in which it has financial interests. But in terms
of strategic complements in Bertrand competition, the outsiders will take advantage of
the price increase and quantity reduction brought by these cross-owners, raising their
product prices (but slightly below the insiders’ prices) and expanding their production
in order to steal the market share from their competitors.

Moreover, an increase in the level of cross-ownership (v) will result in less competi-
tion among insiders, thus inducing them to increase their prices and reduce outputs
by more. Meanwhile, the stronger free-riding incentives will prompt outsiders to
respond more aggressively by raising their product prices and expanding their pro-
duction further. This result is confirmed in Figure 1, where the equilibrium insiders’
and outsiders’ prices (pv

i , pv
o) and quantities (qv

i , qv
o) are plotted as a function of v when

γ = 3, k = 6, n = 9.

(a) Prices as a function v (b) Quantities as a function v

Figure 1: The static Bertrand equilibrium with cross-ownership as a function of v

Furthermore, we conduct a comparative statics analysis of the static Bertrand equi-
librium under the k−symmetric cross-ownership structure with respect to k, n and γ.
We plot the equilibrium prices (pv

i , pv
o) and quantities (qv

i , qv
o) as a function of k when

γ = 3, n = 9, v = 0.1 in Figure 2, of n when γ = 3, k = 6, v = 0.1 in Figure 3, and of γ

when k = 6, n = 9, v = 0.1 in Figure 4, respectively. We observe the following result:

Result 1. The equilibrium Bertrand prices with cross-ownership (pv
i , pv

o) are increasing in k
but decreasing in n or γ, and the equilibrium output of cross-owners (qv

i ) is decreasing in k but
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increasing in n and γ, while the outsiders’ output is increasing in k and γ but decreasing in n.

(a) Prices as a function k (b) Quantities as a function k

Figure 2: The static Bertrand equilibrium with cross-ownership as a function of k

(a) Prices as a function n (b) Quantities as a function n

Figure 3: The static Bertrand equilibrium with cross-ownership as a function of n

(a) Prices as a function γ (b) Quantities as a function γ

Figure 4: The static Bertrand equilibrium with cross-ownership as a function of γ
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Notice that an increase in k or a decrease in n has the same effects as an increase in v
on the equilibrium product prices and outputs, as changes in the cross-ownership struc-
ture can either come from a change in the ownership level v or ratios k/n – the number
of firms in the whole industry that participate in cross-shareholdings. Meanwhile, an
increase in the substitutability parameter γ (or a decrease in product differentiation)
intensifies competition between firms, resulting in lower prices but higher quantities
for both insiders and outsiders. Simulations using any other combinations of k, n, v, γ

show that Result 1 is qualitatively robust.

2.2 The dynamic model

We now consider the case of a nonrenewable resource industry that involves n firms,
each producing a differentiated product with the same initial stock endowments S0j = S
and the same marginal cost of production assumed at 0. Firms are oligopolists in the
resource market where they compete à la Bertrand. Let pj(t) ≥ 0 denote the price and
qj(t) ≥ 0 denote the extraction rate for firm j’s product at time t. Demand for firm j’s
resource is stationary and given by

qj(p1(t), p2(t), · · · , pn(t)) = 1 − pj(t)− γ

(
pj(t)−

1
n

n

∑
l=1

pl(t)

)
, j, l ∈ J.

Then, the aggregate profits of firm j at time t is as follows:

Πj(t) = πj(t) + v ∑
i ̸=j

Πi(t) = pj(t)qj(t) + v ∑
i ̸=j

Πi(t).

Each firm j takes the price paths of all other firms p−j(t) as given and chooses its
own price path pj(t) to maximize the discounted sum of the aggregate profits, which
consists of its operating profit and the share of profits obtained through ownership
interests in other firms, subject to its resource constraint:

max
pj(t)≥0

∫ ∞

0
e−ρt

[
pj(t)qj(t) + v ∑

i ̸=j
Πi(t)

]
dt,

s.t.
∫ ∞

0
qj(t)dt ≤ S0j.

Under the assumption of 0 < v < 1
k−1 , it is possible to solve for the aggregate profit

equation at each time t, and thus the problem of all firms can be reformulated as

max
p(t)≥0

∫ ∞

0
e−ρt

([
B−1

kk 0
0 In−k

]
p(t)q(p(t))

)
dt,

s.t.
∫ ∞

0
q(t)dt ≤ S0(t)dt,
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where S0 = [S01, S02, · · · , S0n]
′. Then for a typical firm i ∈ I,

max
pi(t)≥0

∫ ∞

0
e−ρt

[
1

f (v)

((
1 − (k − 2)v

)
pi(t)qi(t) + v ∑

m∈I\i
pm(t)qm(t)

)]
dt,

s.t.
∫ ∞

0
qi(t)dt ≤ S0i,

while for a typical firm o ∈ O,

max
po(t)≥0

∫ ∞

0
e−ρt

[
po(t)qo(t)

]
dt,

s.t.
∫ ∞

0
qo(t)dt ≤ S0o.

We characterize an open-loop Nash-differentiated Bertrand cross-ownership equilib-
rium (OL-NBCOE) of this game. More precisely,

Definition 1 (Open-loop Nash-differentiated Bertrand Cross-ownership Equilibrium
(OL-NBCOE)). An n-tuple vector of price paths p = (p1, p2, · · · , pk, pk+1, · · · , pn) with
p(t) ≥ 0 for all t ≥ 0 is an open-loop Nash-differentiated Bertrand cross-ownership equilibrium
if

(i) every price path is admissible and satisfies the corresponding resource constraint,

(ii) for all i ∈ I,

∫ ∞

0
e−ρt

[
1

f (v)

((
1 − (k − 2)v

)
pi(t)qi(t) + v ∑

m∈I\i
pm(t)qm(t)

)]
dt

≥
∫ ∞

0
e−ρt

[
1

f (v)

((
1 − (k − 2)v

)
pl(t)ql(t) + v ∑

m∈I\l
pm(t)qm(t)

)]
dt

for all pl satisfying the resource constraint, and

(iii) for all o ∈ O,

∫ ∞

0
e−ρt

[
po(t)qo(t)

]
dt ≥

∫ ∞

0
e−ρt

[
pm(t)qm(t)

]
dt

for all pm satisfying the resource constraint.

We now proceed to characterize an OL-NBCOE of the above-defined game. Let Ti

and To denote the time at which firm i ∈ I and firm o ∈ O deplete their stocks, and
denote by pi and po the price paths and by qi and qo the extraction paths of firm i ∈ I
and firm o ∈ O, respectively. Then,
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Proposition 2. Assume that the initial stocks of all firms are equal, i.e., S0j = S, and let

pi(t) =


n
(

1−(k−2)v
)(

2n(1+γ)−γ
)
+Xλi+Yλo

A+Bv for 0 ≤ t ≤ To(
1−(k−2)v

)
(1+γ)n2+

[(
1−(k−2)v

)
(1+γ)n−(1+v)γ

]
(n+kγ)eρ(t−Ti)(

1−(k−2)v
)
(1+γ)(2n2+kγn)−(1+v)(nγ+kγ2)

for To ≤ t ≤ Ti

1 for t ≥ Ti

, (6)

po(t) =


n
((

1−(k−2)v
)

2n(1+γ)−(1+v)γ
)
+Zλi+Γλo

A+Bv for 0 ≤ t ≤ To
2
(

1−(k−2)v
)
(1+γ)n2−(1+v)nγ+

[(
1−(k−2)v

)
(1+γ)n−(1+v)γ

]
kγeρ(t−Ti)(

1−(k−2)v
)
(1+γ)(2n2+kγn)−(1+v)(nγ+kγ2)

for To ≤ t ≤ Ti

1 for t ≥ Ti

,

(7)

where

X =
(
1 − (k − 2)v − (k − 1)v2)(n(1 + γ)− γ

)(
(n + k − 1)γ + 2n

)
,

Y =
(
1 − (k − 2)v

)(
n(1 + γ)− γ

)
(n − k)γ,

Z =
(
1 − (k − 2)v − (k − 1)v2)(n(1 + γ)− γ

)
kγ,

Γ =
((

1 − (k − 2)v
)(

2n(1 + γ)− kγ
)
− (1 + v)γ

)(
n(1 + γ)− γ

)
,

λi =

[(
1 − (k − 2)v

)
(1 + γ)n − (1 + v)γ

](
1 − (k − 2)v − (k − 1)v2

)(
n(1 + γ)− γ

) eρ(t−Ti),

λo =
kγ
[
(1 + v)γ −

(
1 − (k − 2)v

)
(1 + γ)n

]
eρ(t−Ti) + n

[
(1 + v)γ − 2n

(
1 − (k − 2)v

)
(1 + γ)

]
eρ(t−To)[

(1 + v)(n + kγ)γ −
(
1 − (k − 2)v

)
(1 + γ)(2n + kγ)n

] .

Then, the n-tuple vector peq where peq
j = pi when j = 1, 2, · · · , k and peq

j = po when j = k + 1, · · · , n
constitutes an OL-NBCOE, and the equilibrium extraction paths are given by

qi(t) = 1 − (1 + γ)pi(t) +
γ

n

(
kpi(t) + (n − k)po(t)

)
, (8)

qo(t) = 1 − (1 + γ)po(t) +
γ

n

(
kpi(t) + (n − k)po(t)

)
, (9)

with Ti and To the unique solutions to

∫ Ti

0
qi(t)dt =

∫ Ti

0

[
1 − (1 + γ)pi(t) +

γ

n

(
kpi(t) + (n − k)po(t)

)]
= S, (10)∫ To

0
qo(t)dt =

∫ To

0

[
1 − (1 + γ)po(t) +

γ

n

(
kpi(t) + (n − k)po(t)

)]
= S. (11)

Proof. See Appendix B.

Proposition 2 shows that given an initial resource stock S, all firms will exhaust their
resource stocks in a finite time. Moreover, the outsiders will deplete their stocks earlier
than the insiders, i.e., Ti > To for all S ≥ 0, γ ≥ 0 and 0 < v < 1

k−1 . This is in line with
both the cross-ownership theory and standard oligopoly theory. When a firm acquires a
partial ownership stake in a rival, it tends to compete less aggressively and thus unilat-
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erally increases its product price. As a best response in terms of strategic complements,
the outsider firms will also increase their product prices, but the magnitude of price
increase will be less than that for cross-owners. As a result, each of the outsider firms
tends to extract from its resource stock faster than each of the insider firms.

Using the parameter values ρ = 0.1 and γ = 1, Figure 5 plots the exhaustion dates
(Ti, To) as a function of the initial resource stock S, of a typical insider firm i ∈ I that
engages in cross-ownership, and an outsider firm o ∈ O that remains independent,
respectively, for k = 8, n = 10, and v = 0.1. Simulations using any combinations of k, n
with 0 < v < 1

k−1 and various values for the parameters ρ and γ ≥ 0 show that this
result is qualitatively robust: a symmetric cross-ownership among a subset of firms
will induce them to exhaust their stocks later than those of non-participants for any
resource stock level.

Figure 5: Terminal dates as a function of initial stock

Then the equilibrium price and extraction path consist of two phases: phase I from
date 0 to To, and phase II from To to Ti. During phase I, the extractions of all the n
firms are positive with prices increasing until To, where the extraction and the stock
of firms o ∈ O vanish. During phase II, only the remaining firms i ∈ I still own a
positive stock with prices rising further until Ti, where the extraction and the stock
of these cross-owners vanish. Using the same parameter values as in Figure 5, we
plot the equilibrium extraction path in Figure 6a and the equilibrium price path in
Figure 6b, of a typical insider firm i ∈ I and an outsider firm o ∈ O, respectively for
n = 10, k = 8, v = 0.1 and S = 30. As shown in Figure 6, the outsiders start with a
higher exploitation rate but lower product price than the cross-owners, but at some
point, this trend reverses. As more resources get depleted, both outsiders and insiders
gradually decrease their production and increase their product prices. Eventually,
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(a) The OL-NBCOE extraction path (b) The OL-NBCOE price path

Figure 6: The open-loop Nash-Bertrand cross-ownership equilibrium (OL-NBCOE)

when the outsiders deplete their resource stocks, the resource is supplied only by the
group of cross-owners. As a result, the degree of concentration in supply increases
over time. This increased concentration induced by cross-ownership confers market
power on those cross-owners. Consequently, the prices are raised even further. With the
remaining stocks, the insiders gradually decrease their production until the resource is
totally depleted.

3 The profitability analysis

In this section, we exploit the characterization of both the static equilibrium in a
differentiated Bertrand oligopoly and the OL-NBCOE in the above-defined dynamic
game to investigate the profitability of the cross-ownership. We define the static
profitability of cross-ownership as the difference between the equilibrium operating
profits with and without cross-ownership, and the dynamic one as the difference
between the equilibrium discounted sum of operating profits with and without cross-
ownership.

3.1 The static case

The equilibrium operating profit for a typical firm i that participates in cross-ownership
is given by

πv
i = pv

i qv
i =

n
(
1 − (k − 2)v

)((
1 − (k − 2)v

)
(1 + γ)n − (1 + v)γ

)(
2n + (2n − 1)γ

)2

(A + Bv)2 ,

while for a typical firm in the standard Bertrand model without cross-ownership is

πb = pbqb =
n
(
n + (n − 1)γ

)(
2n + (n − 1)γ

)2 .
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A k-symmetric cross-ownership is profitable if

G(γ, k, n, v) = πv
i − πb > 0.

We derive the following result:

Proposition 3. For any γ ≥ 0, 2 ≤ k ≤ n and 0 < v < 1
k−1 , the static profitability of a

k-symmetric cross-ownership for Bertrand competitors is always positive.

Proof. See Appendix C.

Proposition 3 demonstrates that a k-symmetric cross-ownership is always profitable
under Bertrand competition in a differentiated oligopolistic setting, irrespective of
k, n, v and γ. This is in sharp contrast with the case under Cournot competition, where
the profitability of cross-ownership depends on three countervailing effects. One is
the positive effect on cross-owners’ profits due to the partial elimination of previous
rivalry; the second is the negative effect of non-participants’ production expansion
in terms of strategic substitutability; and the last one is how aggressively outsiders
will respond depending on the levels of shareholdings. For a cross-ownership to be
profitable in Cournot competition, either the first effect dominates the latter two effects,
or the first effect and third effect dominate the second one (Dai, Benchekroun and Long,
2022). However, in our Bertrand setting in which prices are strategic complements, the
second effect becomes positive. Therefore, the three forces that drive the profitability of
cross-ownership moves in the same direction, ensuring a positive profitability.

Furthermore, we plot the static profitability of cross-ownership as a function of v
when γ = 3, k = 6 and n = 9 in Figure 7a, of k when γ = 3, n = 9, v = 0.1 in Figure
7b, of n when γ = 3, k = 6, v = 0.1 in Figure 7c, and of γ when k = 6, n = 9, v = 0.1 in
Figure 7d, respectively. We observe:

Result 2. Cross-ownership is increasingly profitable in either the levels v or ratios k/n. How-
ever, the profitability of cross-ownership is non-monotone in the substitutability parameter γ:
first increasing but later decreasing.

This result bears some similarity with Deneckere and Davidson (1985), which
demonstrates that mergers among a differentiated oligopoly engaging in price competi-
tion are always beneficial and are increasing in size and that they are most beneficial
when γ takes on intermediate values. As in our case, an increase in either the owner-
ship level v or participation ratios (k/n) leads to reduced competition and increased
product prices for all firms, which undoubtedly increases the profitability of cross-
ownership. Meanwhile, rival cross-shareholdings are most beneficial when γ takes on
intermediate values. Indeed, when γ is close to 0, goods are basically unrelated, and
each firm is charging the monopoly price for its products. Cross-ownership thus does
not alter the degree of competition in the market and generates zero profitability. As
products become slightly similar, competition pressure builds up, but cross-ownership
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(a) G as a function v (b) G as a function k

(c) G as a function n (d) G as a function γ

Figure 7: The static profitability of cross-ownership under Bertrand competition

partially reduces that pressure, as one firm’s lost profits can be recouped from its
ownership stakes in its rival competitors. This decreased product differentiation gradu-
ally increases the profitability of cross-ownership until it reaches the maximum level.
However, as product differentiation further decreases, the increased competition effect
dominates the ownership-induced competition reduction effect, reducing the profitabil-
ity of cross-ownership. Eventually, when γ becomes very large, goods become perfect
substitutes, and each firm is pricing at the marginal cost assumed at zero. Therefore,
cross-ownership does not significantly reduce the degree of competition in the mar-
ket and generates no benefits. Simulations using any other combinations of k, n, v, γ

confirm that Result 2 is qualitatively robust.

3.2 The dynamic case

We now turn to the profitability analysis of cross-ownership in a nonrenewable resource
industry. The equilibrium discounted sum of operating profits for a typical firm i that
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engages in rival cross-shareholdings is given by:

VS =
∫ To

0
e−ρt

[
pI

i (t)q
I
i (t)

]
dt +

∫ Ti

To
e−ρt

[
pI I

i (t)qI I
i (t)

]
dt,

where the phase I and II equilibrium price paths (pi(t), po(t)) are given by (6) and
(7), the extraction paths are given by (8) and (9), and the exhaustion dates (Ti, To) are
solutions to (10) and (11), respectively. The equilibrium discounted sum of profits
without cross-ownership for an individual firm is given by:

VB =
∫ TB

0
e−ρt

[
pB(t)qB(t)

]
dt,

where

pB(t) =
n +

(
n + (n − 1)γ

)
eρ(t−TB)

2n + (n − 1)γ
, (12)

qB(t) =
n + (n − 1)γ

2n + (n − 1)γ

[
1 − eρ(t−TB)

]
, (13)

and TB is the solution to

∫ TB

0
qB(t)dt =

n + (n − 1)γ
2n + (n − 1)γ

(
TB − 1

ρ
+

e−ρTB

ρ

)
= S. (14)

Then a k-symmetric cross-ownership is profitable when

GD(γ, k, n, v, S) = VS − VB > 0.

It will be useful to explicitly express GD as a function of (γ, k, n, v, S), but its expres-
sion is too cumbersome to report here. Instead, we choose to numerically examine the
dynamic profitability of the k-symmetric cross-ownership. Using the same parameter
value ρ = 0.1, we illustrate the gains resulting from a k-symmetric cross-ownership as
a function of initial stock S, for different levels of v when γ = 3, k = 6 and n = 9 in
Figure 8a, for different numbers of k when γ = 3, v = 0.1 and n = 9 in Figure 8b, for
different numbers of n when γ = 3, k = 6 and v = 0.1 in Figure 8c, and for different
levels of γ when v = 0.1, k = 6 and n = 9 in Figure 8d, respectively. Figure 8 shows
that it is always profitable for firms to participate in cross-ownership for any levels of
initial resource stock S, irrespective of γ, k, n and v. In addition, for any initial stock
S, the higher the level of cross-ownership v or participation ratios k/n, the higher the
dynamic profitability. However, the profitability of cross-ownership first increases but
then decreases in the γ for all S. These findings are consistent with the ones obtained
under the static case.

To make a direct comparison between the static and dynamic profitability, we use
the same set of parameter values as in Figure 8 and plot in Figure 9 the static and
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(a) GD as a function of S when v varies (b) GD as a function of S when k varies

(c) GD as a function of S when n varies (d) GD as a function of S when γ varies

Figure 8: The dynamic profitability of cross-ownership under Bertrand competition

dynamic percentage profit gains resulting from a k-symmetric cross-ownership, which
are respectively defined by

d(γ, k, n, v) =
πv

i − πb

πb
, D(γ, k, n, v, S) =

VS − VB

VB
.

The dashed and solid lines denote the percentage profit gains in the static and dynamic
cases, respectively. It can be easily observed that when S is large enough, the dynamic
percentage profit gain asymptotically converges to the static result. However, when S
is small enough, cross-ownership may turn out to be less profitable in a nonrenewable
resource sector than in other sectors without stock constraints. Simulations using a
wide range of values of γ, k and n with v < 1

k−1 and of the parameter ρ show that this
result is qualitatively robust. We can thus summarize this result in the following:

Result 3. When the initial resource stock owned by each firm is small enough, a k-symmetric
cross-ownership yields less profit gains in the case of a differentiated nonrenewable resource
oligopoly than other industries without stock constraints.

Result 3 sharply contrasts with the findings obtained in the resource game under
Cournot competition, where the presence of resource scarcity makes it more likely to be

18



(a) Profitability as a function v (b) Profitability as a function k

(c) Profitability as a function n (d) Profitability as a function γ

Figure 9: The percentage increase in profitability of cross-ownership

profitable even under the scenario for which it is strictly unprofitable in the correspond-
ing static framework (Benchekroun, Breton and Chaudhuri, 2019; Dai, Benchekroun
and Long, 2022). Unlike in the quantity competition setting where outsiders are more
constrained in their response to any output reduction brought by insiders due to their
limited resource stocks, here under price competition, resource constraints tend to work
in the opposite direction by inducing the outsiders to aggressively lower their product
price and expand their production. Consequently, this intensified competition reduces
the profitability of cross-ownership in a differentiated nonrenewable resource oligopoly
when the resource stock is small.

4 Welfare analysis

In this section, we investigate the impact of cross-ownership on social welfare, which is
defined as the sum of consumer surplus (CS) and producer surplus (PS) or industry
profits. The latter is defined as the combined sum of the operating profits of the cross-
owners, kπv

i , and of the outsiders, (n − k)πv
o . We first look at the static case, and then

we move to the case of a differentiated nonrenewable resource industry. Subsequently,
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we make a comparison of the welfare changes between the dynamic and static cases.
Note that the CS is defined by

CS =
n

∑
j=1

qj −
n + γ

2n(1 + γ)

n

∑
j=1

q2
j −

γ

n(1 + γ) ∑
j ̸=i

qiqj −
n

∑
j=i

pjqj.

Using symmetry, the CS under the k-symmetric cross-ownership structure is given by

CSv =

(
kqv

i + (n − k)qv
o

)
− n + γ

2n(1 + γ)

(
k(qv

i )
2 + (n − k)(qv

o)
2
)
−
(

kpv
i qv

i + (n − k)pv
oqv

o

)
− γ

n(1 + γ)

(
k(k − 1)

2
(qv

i )
2 + k(n − k)qv

i qv
o +

(n − k)(n − k − 1)
2

(qv
o)

2
)

,

and the CS without cross-ownership is

CSb =
n
2

q2
b =

n
2

(
n + (n − 1)γ

2n + (n − 1)γ

)2

,

while the PS with and without cross-ownership are respectively given by

PSv = kπv
i + (n − k)πv

o = kpv
i qv

i + (n − k)pv
oqv

o ,

PSb = nπb = npbqb.

Therefore, the static welfare change induced by the k-symmetric cross-ownership can
be expressed as

∆W(γ, k, n, v) = Wv − Wb = CSv + PSv − (CSb + PSb),

with the percentage welfare change defined by

W(γ, k, n, v) =
Wv − Wb

Wb
.

Proposition 4. For any γ ≥ 0, 2 ≤ k ≤ n and 0 < v < 1
k−1 , a k-symmetric cross-ownership

in a differentiated Bertrand oligopoly is never welfare-improving.

Proof. See Appendix D.

When firms participate in these cross-ownership arrangements, they tend to com-
pete less aggressively with each other and thus unilaterally increase their product prices
and reduce their outputs, since any profit gains from the firms’ own activities may be
offset by a negative impact on the target firms’ profits. Although the outsiders raise
their product prices and expand their outputs as a response, the overall reduction in
the CS dominates any profit gains brought by cross-ownership, thereby resulting in a
welfare loss for society.

20



We now conduct the welfare analysis for a nonrenewable industry. Under cross-
ownership, the total surplus generated by the exploitation of a nonrenewable resource
is given by

WS =
∫ To

0
e−ρt

[
CSI

S(t) + PSI
S(t)

]
dt +

∫ Ti

To
e−ρt

[
CSI I

S (t) + PSI I
S (t)

]
dt,

where

CSS(t) =kqi(t) + (n − k)qo(t)−
n + γ

2n(1 + γ)

(
k(qi(t))2 + (n − k)(qo(t))2

)
− kpi(t)qi(t)− (n − k)po(t)qo(t)

− γ

n(1 + γ)

(
k(k − 1)(qi(t))2

2
+ k(n − k)qi(t)qo(t) +

(n − k)(n − k − 1)(qo(t))2

2

)
,

PSS(t) =kpi(t)qi(t) + (n − k)po(t)qo(t),

and the phase I and II equilibrium price paths (pi(t), po(t)) are given by (6) and (7), the
extraction paths are given by (8) and (9), and the exhaustion dates (Ti, To) are solutions
to (10) and (11), respectively. The social welfare generated by the exploitation of the
nonrenewable resource under the standard Bertrand model without cross-ownership is
given by

WB =
∫ TB

0
e−ρt

[
n
2
(qB(t))2 + npB(t)qB(t)

]
dt,

where pB(t), qB(t) and TB are defined by (12), (13) and (14), respectively. The percentage
welfare change in a differentiated nonrenewable resource industry can thus be defined
as

WD =
WS − WB

WB
.

Next, we numerically examine the percentage welfare change of the k-symmetric
cross-ownership in the dynamic case and compare it with the static one. Using the same
parameter value ρ = 0.1, we illustrate the dynamic percentage welfare change resulting
from a k-symmetric cross-ownership as a function of initial stock S, for different levels
of v when γ = 3, k = 6 and n = 9 in Figure 10a, for different numbers of k when γ = 3,
v = 0.1 and n = 9 in Figure 10b, for different numbers of n when γ = 3, k = 6 and
v = 0.1 in Figure 10c, and for different levels of γ when v = 0.1, k = 6 and n = 9 in
Figure 10d, respectively. The dashed and solid lines in Figure 10 denote the percentage
welfare loss in the static and dynamic cases, respectively.

It can be easily observed that when S is large enough, i.e., the resource is abundant,
the dynamic percentage welfare change asymptotically converges to the static result.
However, when S is small enough, the dynamic percentage welfare loss in the dynamic
case turns out to be smaller than that of the static case. Simulations using a wide range
of values of γ, k and n with v < 1

k−1 and of the parameter ρ show that this result is
qualitatively robust.
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(a) WD as a function of S when v varies (b) WD as a function of S when k varies

(c) WD as a function of S when n varies (d) WD as a function of S when γ varies

Figure 10: The percentage welfare change as a function of initial stock

Result 4. When the initial resource stock owned by each firm is small enough, the percentage
welfare loss resulting from a k-symmetric cross-ownership in the case of a differentiated nonre-
newable resource oligopoly is smaller than that of other industries without stock constraints.

This result seems quite counterintuitive, as one would typically expect the opposite:
the welfare loss should be larger in the dynamic case. This is because when the resource
stock owned by each firm is small enough, cross-shareholdings between rival firms will
induce them to slow down their extraction and eventually monopolize the market after
the outsiders have exhausted their resource stocks. As a result, the concentrated supply
will enable cross-owners to charge much higher prices, leading to greater welfare losses.

While cross-ownership participants can raise their product prices much higher, it
also prolongs the duration over which the resources can be exploited. As resources
become increasingly scarce, the availability and extended periods of use of these
resources partially offset the negative effect of higher prices on the consumer surplus.
Thus, the consumer surplus loss is relatively smaller in the dynamic case than in the
static framework when S is small enough. Consequently, the smaller loss in consumer
surplus due to increased scarcity and the increased profits due to higher prices will
result in a smaller welfare loss in the case of a differentiated nonrenewable resource
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oligopoly than that in the static case.

5 Conclusion

In this paper, we examine whether the conclusions obtained in a static framework
can be extended to the case of a differentiated nonrenewable resource oligopoly when
rival firms compete à la Bertrand and engage in cross-shareholdings. We show that
in the static setting, a symmetric cross-ownership is always profitable and is increas-
ingly profitable in either levels or ratios, and it is most beneficial when the degree of
competition takes on intermediate values. These static results also carry over to the
case of a dynamic nonrenewable differentiated oligopoly. However, when the initial
resource stock owned by each firm is small enough, a k-symmetric cross-ownership
yields less profit gains in the case of a differentiated nonrenewable resource oligopoly
than other industries without stock constraints. This is in sharp contrast with the games
in quantity setting. Finally, we demonstrate that cross-ownership may turn out to be
relatively less detrimental to society in a differentiated nonrenewable resource industry
than other industries where resource constraints are absent.

23



References

Benchekroun, Hassan, Amrita Ray Chaudhuri, and Dina Tasneem. 2020. “On the
impact of trade in a common property renewable resource oligopoly.” Journal of
Environmental Economics and Management, 101: 102304.

Benchekroun, Hassan, and Gérard Gaudet. 2015. “On the effects of mergers on equilib-
rium outcomes in a common property renewable asset oligopoly.” Journal of Economic
Dynamics and Control, 52: 209–223.

Benchekroun, Hassan, Miao Dai, and Ngo Van Long. 2022. “The Impact of Cross-
ownership on the Value of a Clean Technology in the Energy Market.” Environmental
Modeling & Assessment, 27(6): 1007–1019.

Benchekroun, Hassan, Michèle Breton, and Amrita Ray Chaudhuri. 2019. “Mergers in
nonrenewable resource oligopolies and environmental policies.” European Economic
Review, 111: 35–52.

Benndorf, Volker, and Johannes Odenkirchen. 2021. “An experiment on partial cross-
ownership in oligopolistic markets.” International Journal of Industrial Organization,
78: 102773.

Bresnahan, Timothy F, and Steven C Salop. 1986. “Quantifying the competitive effects
of production joint ventures.” International Journal of Industrial Organization, 4(2): 155–
175.

Brito, Duarte, António Osório, Ricardo Ribeiro, and Helder Vasconcelos. 2018. “Uni-
lateral effects screens for partial horizontal acquisitions: The generalized HHI and
GUPPI.” International Journal of Industrial Organization, 59: 127–189.

Brito, Duarte, Luís Cabral, and Helder Vasconcelos. 2014. “Divesting ownership in a
rival.” International Journal of Industrial Organization, 34: 9–24.

Brito, Duarte, Ricardo Ribeiro, and Helder Vasconcelos. 2014. “Measuring unilateral
effects in partial horizontal acquisitions.” International Journal of Industrial Organiza-
tion, 33: 22–36.

Colombo, Luca, and Paola Labrecciosa. 2015. “On the Markovian efficiency of Bertrand
and Cournot equilibria.” Journal of Economic Theory, 155: 332–358.

Colombo, Luca, and Paola Labrecciosa. 2018. “Consumer surplus-enhancing coopera-
tion in a natural resource oligopoly.” Journal of Environmental Economics and Manage-
ment, 92: 185–193.

Dai, Miao, Hassan Benchekroun, and Ilyass Dahmouni. 2024. “On the impact of cross-
ownership in a common property renewable resource oligopoly.” CEE-M, Universtiy
of Montpellier, CNRS, INRA, Montpellier SupAgro.

24



Dai, Miao, Hassan Benchekroun, and Ngo Van Long. 2022. “On the profitability of
cross-ownership in Cournot nonrenewable resource oligopolies: Stock size matters.”
Journal of Environmental Economics and Management, 111: 102597.

Deneckere, Raymond, and Carl Davidson. 1985. “Incentives to form coalitions with
Bertrand competition.” The RAND Journal of Economics, 473–486.

Dietzenbacher, Erik, Bert Smid, and Bjørn Volkerink. 2000. “Horizontal integration in
the Dutch financial sector.” International Journal of Industrial Organization, 18(8): 1223–
1242.

Farrell, Joseph, and Carl Shapiro. 1990. “Asset ownership and market structure in
oligopoly.” The RAND Journal of Economics, 275–292.

Flath, David. 1991. “When is it rational for firms to acquire silent interests in rivals?”
International Journal of Industrial Organization, 9(4): 573–583.

Flath, David. 1992. “Horizontal shareholding interlocks.” Managerial and Decision Eco-
nomics, 13(1): 75–77.

Gilo, David, Yossi Moshe, and Yossi Spiegel. 2006. “Partial cross ownership and tacit
collusion.” The Rand Journal of Economics, 37(1): 81–99.

Hariskos, Wasilios, Manfred Königstein, and Konstantinos G Papadopoulos. 2022.
“Anti-competitive effects of partial cross-ownership: Experimental evidence.” Journal
of Economic Behavior & Organization, 193: 399–409.

IEA. 2023. Coal Market Update – July 2023. IEA, Paris. https://www.iea.org/reports/co
al-market-update-july-2023, Licence: CC BY 4.0.

IRENA. 2023. Geopolitics of the energy transition: critical materials. IRENA.

Kooroshy, Jaakko, Felix Preston, and Sian Bradley. 2014. “Cartels and competition in
minerals markets: Challenges for global governance.” Chatham House.

Kumar, B Rajesh. 2012. Mega Mergers and Acquisitions. Springer.

Loury, Glenn C. 1986. “A theory of’oil’igopoly: Cournot equilibrium in exhaustible
resource markets with fixed supplies.” International Economic Review, 285–301.

O’Brien, Daniel P, and Steven C Salop. 2000. “Competitive effects of partial ownership:
financial interest and corporate control.” Antitrust Law Journal, 67(3): 559–614.

Paraskova, Tsvetana. 2022. The Next OPEC-Like Cartel Could Be In Battery Metals. Oil-
price.com, https://oilprice.com/Energy/Energy-General/The-Next-OPEC-Like-C
artel-Could-Be-In-Battery-Metals.html.

25

https://www.iea.org/reports/coal-market-update-july-2023
https://www.iea.org/reports/coal-market-update-july-2023
https://oilprice.com/Energy/Energy-General/The-Next-OPEC-Like-Cartel-Could-Be-In-Battery-Metals.html
https://oilprice.com/Energy/Energy-General/The-Next-OPEC-Like-Cartel-Could-Be-In-Battery-Metals.html


Polasky, Stephen. 1992. “Do oil producers act as ‘Oil’igopolists?” Journal of Environmen-
tal Economics and Management, 23(3): 216–247.

Reynolds, Robert J, and Bruce R Snapp. 1986. “The competitive effects of partial
equity interests and joint ventures.” International Journal of Industrial Organization,
4(2): 141–153.

Shubik, Martin, and Richard Levitan. 2013. “Market structure and behavior.” In Market
Structure and Behavior. Harvard University Press.

Singh, Nirvikar, and Xavier Vives. 1984. “Price and quantity competition in a differen-
tiated duopoly.” The RAND Journal of Economics, 546–554.

26



Appendices

A Proof of Proposition 1

Proof. Note that F(v) = A + Bv is a linear function in v ∈ (0, 1
k−1) with F(0) = A > 0

and

F(
1

k − 1
) =

(2n + k − 2)(n − k)γ2 + 2n(3n − k − 1)γ + 4n2

k − 1
> 0.

Therefore, for any γ ≥ 0, 2 ≤ k ≤ n and 0 < v < 1
k−1 , F(v) = A + Bv > 0. Moreover,

we have

pv
i − pv

o =
nvγ(k − 1)

A + Bv
> 0, qv

i − qv
o =

nvγ(k − 1)(1 + γ)

A + Bv
> 0,

and

∂pv
i (v)
∂v

=
nγ(k − 1)

(
2n + (2n − 1)γ

)(
2n + (n + k − 1)γ

)
(A + Bv)2 > 0,

∂pv
o(v)
∂v

=
knγ2(k − 1)

(
2n + (2n − 1)γ

)
(A + Bv)2 > 0,

∂qv
i (v)
∂v

= −
γ(k − 1)

(
2n + (2n − 1)γ

)(
(n − k)(n − 1)γ2 + (3n − k − 1)nγ + 2n2)

(A + Bv)2 < 0,

∂qv
o(v)
∂v

=
kγ2(k − 1)

(
n + (n − 1)γ

)(
2n + (2n − 1)γ

)
(A + Bv)2 > 0.

Thus, for any v ∈ (0, 1
k−1),

pv
i (v) > pv

o(v) > pv
o(0) = pb, qv

o(v) > qv
o(0) = qb = qv

i (0) > qv
i (v),

and pv
i , pv

o and qv
o are strictly increasing in v, but qv

i decreases in v.

B Proof of Proposition 2

Proof. We use optimal control theory to characterize the OL-NBCOE. The current value
Hamiltonian associated with the problem of a typical firm i ∈ I is given by

Hi(pi, p−i, λi, t) =
1

f (v)

((
1 − (k − 2)v

)
piqi + v ∑

m∈I\i
pmqm

)
− λiqi,

while that for a typical firm o ∈ O is

Ho(po, p−o, λo, t) = poqo − λoqo.
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Exploiting symmetry, the maximum principle yields(
1 − (k − 2)v

)[
1 − 2pi(1 + γ) +

γ

n
(
kpi + (n − k)po

)
+ pi

γ

n

]
+ v(k − 1)pi

γ

n

+λi

(
1 − (k − 2)v − (k − 1)v2

)(
1 + γ(1 − 1

n
)

)
= 0, (15)

for i = 1, 2, · · · , k and

1 − 2po(1 + γ) +
γ

n

(
kpi + (n − k)po

)
+ po

γ

n
+ λ0

(
1 + γ(1 − 1

n
)

)
= 0, (16)

for o = k + 1, · · · , n, with
dλi

dt
= ρλi, (17)

dλo

dt
= ρλo. (18)

Solving for (pi, po) from (15) and (16), then we get

pi(t) =
n
(
1 − (k − 2)v

)(
2n(1 + γ)− γ

)
+ Xλi + Yλo

A + Bv
, (19)

where

X =
(
1 − (k − 2)v − (k − 1)v2)(n(1 + γ)− γ

)(
(n + k − 1)γ + 2n

)
,

Y =
(
1 − (k − 2)v

)(
n(1 + γ)− γ

)
(n − k)γ,

and

po(t) =
n
((

1 − (k − 2)v
)
2n(1 + γ)− (1 + v)γ

)
+ Zλi + Γλo

A + Bv
, (20)

where

Z =
(
1 − (k − 2)v − (k − 1)v2)(n(1 + γ)− γ

)
kγ,

Γ =

((
1 − (k − 2)v

)(
2n(1 + γ)− kγ

)
− (1 + v)γ

)(
n(1 + γ)− γ

)
.

During the second phase where only firms i ∈ I extract a positive quantity, the maxi-
mum principle yields(

1 − (k − 2)v
)[

1 − 2pi(1 + γ) +
γ

n
(
kpi + (n − k)po

)
+ pi

γ

n

]
+ v(k − 1)pi

γ

n

+λi

(
1 − (k − 2)v − (k − 1)v2

)(
1 + γ(1 − 1

n
)

)
= 0, (21)

with
dλi

dt
= ρλi, (22)
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where po is the solution to

qo = 1 − po(1 + γ) +
γ

n

(
kpi + (n − k)po

)
= 0,

or

po =
1 + γ

n kpi

1 + γ
n k

=
n + kγpi

n + kγ
. (23)

Substitute (23) into (21) and solve for pi, we obtain

pi(t) =

(
1 − (k − 2)v

)
(1 + γ)n2 +

(
1 − (k − 2)v − (k − 1)v2

)(
n(1 + γ)− γ

)
(n + kγ)λi(

1 − (k − 2)v
)
(1 + γ)(2n2 + kγn)− (1 + v)(nγ + kγ2)

.

(24)

The terminal dates Ti and To are endogenous and determined by

Hi(pi(Ti), p−i(Ti), λi(Ti), Ti) = 0

for i ∈ I and
Ho(po(To), p−o(To), λo(To), To) = 0

for o ∈ O. These terminal conditions, along with the maximum principle, imply that

qi(Ti) = 0, qo(To) = 0. (25)

From (17), (18) and (22) and continuity of the costate variable λi at To, we have

λi = λi0eρt ∀ t ∈ [0, Ti], (26)

λo = λo0eρt ∀ t ∈ [0, To], (27)

where λi0 and λo0 are determined using conditions (25) along with (24) and (20).
Note that at the terminal date Ti,

qi(Ti) = 1 − pi(1 + γ) +
γ

n

(
kpi + (n − k)po

)
=

(1 + γ)n
n + kγ

(1 − pi(Ti)) = 0,

or
pi(Ti) = 1.

Therefore, from (24), we have

pi(Ti) =

(
1 − (k − 2)v

)
(1 + γ)n2 +

(
1 − (k − 2)v − (k − 1)v2

)(
n(1 + γ)− γ

)
(n + kγ)λi0eρTi(

1 − (k − 2)v
)
(1 + γ)(2n2 + kγn)− (1 + v)(nγ + kγ2)

= 1.

(28)
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That is,

λi0 =

[(
1 − (k − 2)v

)
(1 + γ)n − (1 + v)γ

]
(
1 − (k − 2)v − (k − 1)v2

)(
n(1 + γ)− γ

) e−ρTi ,

and thus

λi = λi0eρt =

[(
1 − (k − 2)v

)
(1 + γ)n − (1 + v)γ

]
(
1 − (k − 2)v − (k − 1)v2

)(
n(1 + γ)− γ

) eρ(t−Ti). (29)

Also, at the terminal date To, we have

qo(To) = 1 − (1 + γ)po(To) +
γ

n

(
kpi(To) + (n − k)po(To)

)
= 0,

or
n + kγpi(To)− (n + kγ)po(To) = 0. (30)

From (19) and (20),

pi(To) =

n
(

1 − (k − 2)v
)(

2n(1 + γ)− γ

)
+ Xλi(To) + Yλo0eρTo

A + Bv
, (31)

po(To) =

n
((

1 − (k − 2)v
)
2n(1 + γ)− (1 + v)γ

)
+ Zλi(To) + Γλo0eρTo

A + Bv
, (32)

where

λi(To) =

[(
1 − (k − 2)v

)
(1 + γ)n − (1 + v)γ

]
(
1 − (k − 2)v − (k − 1)v2

)(
n(1 + γ)− γ

) eρ(To−Ti).

Substitute (31) and (32) into (30), we can then solve for

λo0 =

kγ

[
(1 + v)γ −

(
1 − (k − 2)v

)
(1 + γ)n

]
e−ρTi + n

[
(1 + v)γ − 2n

(
1 − (k − 2)v

)
(1 + γ)

]
e−ρTo[

(1 + v)(n + kγ)γ −
(
1 − (k − 2)v

)
(1 + γ)(2n + kγ)n

] ,

and thus

λo = λo0eρt =

kγ

[
(1 + v)γ −

(
1 − (k − 2)v

)
(1 + γ)n

]
eρ(t−Ti) + n

[
(1 + v)γ − 2n

(
1 − (k − 2)v

)
(1 + γ)

]
eρ(t−To)[

(1 + v)(n + kγ)γ −
(
1 − (k − 2)v

)
(1 + γ)(2n + kγ)n

] .

(33)

Substituting (29) and (33) into (19), (20) and (24) yields the Phase I (0 ≤ t ≤ To) and
Phase II (To ≤ t ≤ Ti) equilibrium price paths of all the firms as presented in (6) and (7).
These equilibrium paths are determined as functions of the terminal dates Ti and To,
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which are then endogenously determined from the resource constraint conditions as in
(10) and (11). It can be shown that such a non-linear system in (Ti, To) admits a unique
solution with Ti ≥ To.

C Proof of Proposition 3

Proof. We have

G(γ, k, n, v) = πv
i − πb =

γ2nv(k − 1)Θ(v)(
2n + (n − 1)γ

)2
(A + Bv)2

,

where

Θ(v) = θ0 −
[
(n − 1)γ3θ1 + nγ2θ2 + 4γn2θ3 + 4n3(k − 1)(2k − 3)

]
v,

with

θ0 =
(
2n + (2n − 1)γ

)(
2n + (n − 1)γ

)(
2n(k − 1) + (n − 1)(2k − 1)γ

)
> 0,

θ1 = (k2 + 1)(2n − 1)2 + k2(k − 2)− (9k + 1)n2 + k(11n − 2),

θ2 = k2(4n(4n − 5) + k + 3
)
+ (n − 1)

(
(15n − 7)− k(37n − 15)

)
,

θ3 = k2(5n − 3)− 2(3n − 2)(2k − 1).

Therefore, G(γ, k, n, v) has the same sign as Θ(v). Note that Θ(v) is a linear function in
v with

Θ(0) = θ0 > 0, Θ(
1

k − 1
) =

1
k − 1

Ω(k, n, γ),

where

Ω(k, n, γ) =n3(1 + γ)(2 + γ)
(
2(k − 1) + γ(3k − 1)

)
− n2γ

(
2(1 + γ)(2 + γ)(k2 − 1) + k(5γ2 + 10γ + 4)

)
− nγ2((k3 + 1)(1 + γ)− k2(7 + 5γ) + k(1 − γ)

)
+ k(k2 − 3k + 1)γ3.

At n = k, we have

Ω(k, k, γ) = k(k − 1)(2k + (2k − 1)γ)2 > 0.

In addition, the derivative of Ω(k, n, γ) with respect to n is given by

∂Ω(k, n, γ)

∂n
=3n2(1 + γ)(2 + γ)

(
2(k − 1) + γ(3k − 1)

)
− 2nγ

(
2(1 + γ)(2 + γ)(k2 − 1) + k(5γ2 + 10γ + 4)

)
− γ2((k3 + 1)(1 + γ)− k2(7 + 5γ) + k(1 − γ)

)
,
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which is a quadratic U-shaped function of n with

∂Ω(k, n, γ)

∂n

∣∣∣∣
n=k

= (2k+(2k− 1)γ)
(
(2k− 1)(k− 1)γ2 +(8k2 − 7k+ 1)γ+ 6k(k− 1)

)
> 0.

Therefore, for any γ ≥ 0 and n ≥ k ≥ 2, ∂Ω(k,n,γ)
∂n > 0. This means that Ω(k, n, γ) is a

strictly increasing function in n with Ω(k, k, γ) > 0. Then, we must have Ω(k, n, γ) > 0
and thus Θ( 1

k−1) > 0 for all γ ≥ 0 and n ≥ k ≥ 2. This condition, together with the
fact that Θ(0) = θ0 > 0 and Θ(v) is a linear function in v, concludes that Θ(v) > 0 and
thus G(γ, k, n, v) for all γ ≥ 0, n ≥ k ≥ 2, and v ∈ (0, 1

k−1).

D Proof of Proposition 4

Proof. After substitution, the static welfare change becomes

∆W =
k(k − 1)nvγΦ(v)

2(2n + (n − 1)γ)2
(

2n2(1 − (k − 2)v)(γ2 + 3γ + 2)− nγ(4 + 3γ + (6 + 5γ − 2k(1 + γ))v) + (1 − (k2 − k − 1)v)γ2
)2 ,

where

Φ(v) = ϕ0 +

[
16(k − 2)n4 − (n − k)(k − 1)(n − 1)2γ4 + nγ3ϕ1 + 4n2γ2ϕ2 + 4n3γϕ3

]
v,

with

ϕ0 = −2n
(
2n + (n − 1)γ

)(
2n + (2n − 1)γ

)2
< 0,

ϕ1 = (5n − 4)k2 + (8n3 − 17n2 + 5n + 3)k − (16n3 − 33n2 + 20n − 3),

ϕ2 = 8(k − 2)n2 + (19 − 9k)n + k2 + k − 5,

ϕ3 = 10(k − 2)n + 11 − 5k.

Thus, ∆W(k, n, v, γ) has the same sign as Φ(v), which is a linear function in v with

Φ(0) = ϕ0 < 0, Φ(
1

k − 1
) =

1
k − 1

Ψ(k, n, γ),

where

Ψ(k, n, γ) =(k − 1)kγ4 − 8(1 + γ)2(2 + γ)n4 − γ(1 + γ)

(
(k − 1)γ2 − 16γ − 4(k + 5)

)
n3

+ γ2
(
(k2 − 2)(1 + γ)(4 + γ) + k(γ2 − 5γ − 8)

)
n2 + γ3

(
− 2(2 + γ)k2 + (5 + γ)k + 1 + γ

)
n,

At n = k,
Ψ(k, k, γ) = −k(4k + (k − 1)γ)(2k + (2k − 1)γ)2 < 0.
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In addition, we have

∂Ψ(k, n, γ)

∂n
=− 32(1 + γ)2(2 + γ)n3 − 3γ(1 + γ)

(
(k − 1)γ2 − 16γ − 4(k + 5)

)
n2

+ 2γ2
(
(k2 − 2)(1 + γ)(4 + γ) + k(γ2 − 5γ − 8)

)
n + γ3

(
− 2(2 + γ)k2 + (5 + γ)k + 1 + γ

)
,

and

∂2Ψ(k, n, γ)

∂n2 =− 96(1 + γ)2(2 + γ)n2 − 6γ(1 + γ)

(
(k − 1)γ2 − 16γ − 4(k + 5)

)
n

+ 2γ2
(
(k2 − 2)(1 + γ)(4 + γ) + k(γ2 − 5γ − 8)

)
,

which is an inverted U-shaped quadratic function in n with

∂2Ψ(k, n, γ)

∂n2

∣∣∣∣
n=k

= −4F(k, γ),

where

F(k, γ) = k2(48+ 114γ+ 88γ2 + 23γ3 +γ4)− kγ
(
30+ 50γ+ 23γ2 + 2γ3)+γ2(4+ 5γ+γ2).

The function F(k, γ) is a U-shaped quadratic function in k, and it has a minimum at

kmin =
γ
(
30 + 50γ + 23γ2 + 2γ3)

2(48 + 114γ + 88γ2 + 23γ3 + γ4)
.

It can be easily shown that

kmin − 2 = −192 + 426γ + 302γ2 + 69γ3 + 2γ4

2(1 + γ)(48 + 66γ + 22γ2 + γ3)
< 0.

and
F(2, γ) = 192 + 396γ + 256γ2 + 51γ3 + γ4 > 0, ∀ γ ≥ 0.

Therefore, F(k, γ) > 0 for all k ≥ 2 and γ ≥ 0. This means that ∂2Ψ(k,n,γ)
∂n2

∣∣∣
n=k

< 0, and

thus for any n > k, ∂2Ψ(k,n,γ)
∂n2 < 0. So the function Ψ(k, n, γ) is concave in n and the first

derivative ∂Ψ(k,n,γ)
∂n is decreasing in n.

Furthermore, evaluating at n = k yileds

∂Ψ(k, n, γ)

∂n

∣∣∣∣
n=k

=− k3(64 + 148γ + 108γ2 + 25γ3 + γ4) + k2γ(60 + 92γ + 37γ2 + 3γ3)

− kγ2(16 + 15γ + 3γ2) + γ3(1 + γ) ≡ f (k, γ),
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with

∂ f (k, γ)

∂k
=− 3k2(64 + 148γ + 108γ2 + 25γ3 + γ4) + 2kγ(60 + 92γ + 37γ2 + 3γ3)

− γ2(16 + 15γ + 3γ2),

which is an inverted U-shaped quadratic function in k and has a maximum at

kmax =
γ(60 + 92γ + 37γ2 + 3γ3)

3(64 + 148γ + 108γ2 + 25γ3 + γ4)
< 2.

Since
f (2, γ) = −(512 + 944γ + 528γ2 + 81γ3 + γ4) < 0, ∀ γ ≥ 0,

it follows that for any k > 2, f (k, γ) < 0, and thus ∂Ψ(k,n,γ)
∂n

∣∣∣
n=k

< 0. Given that ∂Ψ(k,n,γ)
∂n

is decreasing in n, we must have that for any n > k, ∂Ψ(k,n,γ)
∂n < 0. This in turn means

that Ψ(k, n, γ) is a decreasing function in n. Combined with the condition Ψ(k, k, γ) < 0,
it yields that Ψ(k, n, γ) < 0 for any n > k. So we have proved that for any γ ≥ 0 and
2 ≤ k ≤ n, Φ( 1

k−1) < 0. Combined with the fact that Φ(0) = ϕ0 < 0 and Φ(v) is linear
in v, it must hold that

∆W(k, n, v, γ) < 0, ∀ γ ≥ 0, 2 ≤ k ≤ n, 0 < v <
1

k − 1
.
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